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The symmetry of a crystal has profound effects on its physical properties and so does symmetry-breaking
on the characteristics of a phase transition from one crystal structure to another. For an important class of
smart materials, the ferroics, their functionality and performance are associated with cycles of transitions
from multiple structural states of one phase to those of the other. Using group and graph theories, we
construct phase transition graph (PTG) and show that both the functionality and performance of ferroics

are dictated by the topology of their PTGs. In particular, we demonstrate how the giant piezoelectricity in
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ferroelectrics and the functional fatigue in shape memory alloys (SMAs) are related to their unique PTG
topological features. Using PTG topology as a guide, we evaluate systematically new systems potentially
having giant piezoelectricities and giant electro- and magneto-strictions and discuss the design strate-
gies for high performance SMAs with much improved functional fatigue resistance.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Crystal structural changes in response to external fields (tem-
perature, pressure/stress, electrical or magnetic, etc.) underpin the
functionality of an important class of smart materials, the ferroics.
Because of the symmetry-breaking associated with a structure
change, there are multiple crystallographically equivalent and
energetically degenerate ways to transform from one crystal
structure to another (will be referred to as phase transition path-
ways (PTPs) hereafter), generating multiple crystallographically
equivalent and energetically degenerate structural states of the
product phase called transformation variants [1—4]. These variants
arrange themselves into self-accommodating domain patterns and
can switch from one to another by an external field, thus sensing
and actuation can be realized simultaneously. The ferroics have
found critical applications in many fields [5—9] and extensive ef-
forts have been made in recent years to develop advanced ferroics
with much enhanced performance, such as giant piezoelectricity,
giant electro- and magneto-striction and giant super-elastic
response.

It has yet to be recognized, however, that the properties of fer-
roics are dictated not only by the symmetry of individual crystal
structures involved in and the symmetry-breaking during the
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phase transition, but also by the interconnection of the multiple
structural states through the multiple PTPs, which yields a PTP
network or phase transition graph (PTG). PTG is a new theoretical
construct capturing the sequential changes of crystal structures
during multiple forward and backward phase transitions (will be
referred to as phase transition cycles hereafter), and it can be utilized
to analyze systematically the symmetry breaking during the tran-
sition cycles as well as the associated defect structures. In the
following sections, we first provide a rigorous mathematical defi-
nition of PTG by using group and graph theories and then
demonstrate how its graph features (e.g., connectivity, topology,
symmetry, etc.) dictate the properties of ferroics such as the giant
piezoelectricity in ferroelectrics and functional fatigue in shape
memory alloys (SMAs). In contrast to crystal physics [10] that
studies the relationship between physical properties and the
structure and symmetry of each individual phase, and to Landau
theory [11] that studies properties of one-way structural phase
transitions with symmetry-breaking, this PTG analysis studies the
characteristics and physical properties of transition cycling from
multiple structural states of one phase to those of the other.

In Landau theory [11] of structural phase transitions, the free
energy of a low-symmetry product phase is approximated by a
power series expansion with respect to the high-symmetry parent
phase. However, there are two inherent deficiencies in this
approach: (1) it requires a unique high-symmetry phase that has all
the symmetry elements of the low symmetry phase (i.e., a group-
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subgroup relationship); (2) only local pathway connectivity within
the vicinity of the high-symmetry phase is captured. Consider, for
example, the body-centered cubic (BCC, space group Im3m) struc-
ture to hexagonal-close-packed (HCP, space group P6s3/mimc)
structure transition through the Burgers path [12]. The four-fold
symmetry breaks during the BCC— HCP transition while the six-
fold symmetry breaks during the HCP— BCC transition, leading to
12 and 3 crystallographic equivalent PTPs and structural states,
respectively. Since a crystalline state having both four-fold and six-
fold symmetry is theoretically impossible, a high-symmetry state
that has all the symmetry elements of these two structures does not
exist and the pathway connectivity among the multiple BCC and
HCP states cannot be localized and limited within the vicinity of any
of these states (infinite and interconnected pathway network as
will be shown later). The same is true for the face-centered-cubic
(FCC) to BCC structural phase transition through the Bain path
[13], another commonly observed structural change. Thus Landau
theory is limited in a local description and cannot capture the global
connectivity of structural states and PTPs as well as the topology of
PTG during multiple transition cycles, which is critical for the
operation of ferroics. Even though some specific forms of the free
energy have been proposed to deal with certain phase transitions
(e.g., BCC to HCP) in the literature [14], a general way to capture the
global connectivity is unavailable. Obviously a new theoretical
framework is required to construct PTGs and study their topological
features.

Below we formulate a general theoretical framework based on
group and graph theories to construct PTGs. Through the con-
struction of PTGs, a fundamental connection among crystal sym-
metry, topology of PTG and behavior of structural phase transition
cycling is established. As examples of applications, typical struc-
tural phase transitions found in experiments that offer giant
piezoelectricity and giant electro- and magneto-strictions are
analyzed and a unique topological feature shared by their PTGs is
identified, which reveals the crystallographic requirements of the
exceptional functionalities discovered around the so-called mor-
photropic phase boundaries (MPBs) in these systems [15—23].
Furthermore, we investigated the physical origin of functional fa-
tigue characterized by the irrecoverable strain accumulated during
repeated actuation of SMAs [24,25]. We show that the functional
fatigue is attributed to the change in PTG topology by the activation
of symmetry dictated non-PTPs (NPTP), which leads to the con-
struction of generalized-PTG (GPTG). In particular, crystalline de-
fects generated in NiTi because of such a PTG topology change are
analyzed and the special grain boundaries and dislocations pre-
dicted through the PTG analysis are shown to be consistent with
experimental observations. Using PTG topology as a new design
criterion, ferroic systems potentially having giant piezoelectricity
and giant electro- and magneto-strictions are predicted, and stra-
tegies to improve functional fatigue resistance are proposed. Thus
PTGs can be used in combination with phase diagrams to motivate
and guide the design of ferroic smart materials and other advanced
material systems whose properties are controlled by structural
phase transition cycling.

2. Construction of phase transition graph

Mathematically, a phase transition between two structural
states can be interpreted as a pairwise relation and represented
conveniently by a graph. Taking advantage of the well-established
study of topology (e.g., circular vs. tree, see Fig. 1) and symmetry
of a graph in graph theory [26], the topology and symmetry of PTG
can be investigated systematically. In particular, the symmetry of a
PTG can be defined as the automorphism group of the graph,
including all operations that map the PTG onto itself while
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Fig. 1. Topological classification of infinite graphs.

preserving its connectivity. Note the similarity and difference be-
tween crystal symmetry and PTG symmetry; the crystal symmetry
is described through space and point groups consisting of all
symmetry operations that map a crystal structure onto itself, while
the PTG symmetry is described by the automorphism group con-
sisting of all symmetry operations that map the graph onto itself. In
fact, a crystal lattice can also be considered as a “lattice graph” with
the lattice sites as vertices and the “bonds” between nearest
neighboring sites as edges. Then all the operations in the space
group of the crystal lattice belong to the automorphism group of
the “lattice graph”. In graph theory, both the topology and sym-
metry of a graph are important features characterizing its con-
nectivity. They are utilized fully in the current study to analyze and
classify PTGs and the associated physical properties of the corre-
sponding phase transition cycling, as will be shown in Section 3.

For a PTG, G(V, E), V = {vg1, Va2, ..., VB1, Vp2, ...} is a set of vertices
that correspond to the multiple structural states of «, f, ... phases
mentioned earlier and E is a set of edges that connect the vertices
and represent the PTPs among the structural states. Since an edge
describes a transition process, edges connecting a vertex to itself
are excluded. Consider, for example, the PTG for an a. < f transition
where there are only one structural state for each phase and there is
only one PTP between the two structural state. Then the PTG in-
cludes two vertices and one edge connecting them. In this case, the
order of both « vertex and P vertex (i.e., the number of edges
connecting to them) is 1, which can be noted as (Ny, Ng) = (1,1). In
general, (N,, Np) depends on the number PTPs of the forward (N,)
o— B transition and backward (Ng) p—a transition and can be
determined by using group theory [4,27]. When (N,, Ng) equals
(1,n) or (n,1), a “n-star” graph will be generated (n is an integer
larger than 1). However, if both N, and Ng are larger than 1 for a
given (N, Np), diverse types of PTGs could be generated, including
finite or infinite tree graph, and circular graphs with different
length, as will be demonstrated below. The global connectivity and
topological features of these PTGs depend on the nature of the
structural phase transitions. In Fig. 1, different types of graphs are
classified based to their topology, some of which will be utilized in
the following pathway analysis.

To illustrate the PTG at an intuitive level, we first consider
several typical martensitic phase transitions in 2D (Fig. 2). For the
square < hexagon transition with the lattice correspondence (LC)
shown in Fig. 2(a), the vertex order can be determined as (2,3)
[4,27]. By choosing a reference state (e.g., the square state in the
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