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a b s t r a c t

Migration of phase boundaries in crystalline solids eliminates one set of lattice sites and establishes
another. Using a combination of phase field crystal modeling and crystallographic analysis, we present
here a complete atomistic description of the migration mechanism of a high-index planar interface
during a diffusional hexagon to square phase transformation. In particular we show that a terrace-step
interface advances macroscopically in the form of growth ledges, while microscopically its migration
occurs by opposite shearing on the terraces and a one-to-two splitting of lattice sites, giving a new class of
lattice site correspondence and superabundant vacancies. In addition, a new approach capable of finding
a critical nucleus with atomic resolution is developed by combining the phase field crystal energetics
with the free-end nudged elastic band algorithm.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

When people invoke “atoms” to describe plasticity or phase
transformation of crystalline materials, they very often really mean
“atomic sites” (lattice site or site in this paper). The distinction
between “site” and “atom” is parallel to the distinction between the
governmental structure of a country and who is occupying which
office at the moment. “Site” can be enduring, for instance a
particular lattice site in bronze may be occupied by Cu atom, Sn
atom or vacancy at different times. However, in plasticity and in
phase transformations, the site lattice may necessarily change.
Unlike atoms which cannot be created/annihilated and therefore
must satisfy local conservation, there is no conservation rule of
lattice sites, so concepts like “lattice correspondence”, “ledge mo-
tion” and “transformation strain” need to be carefully considered in
light of this [1]. Here we examine the creation/annihilation/motion
dynamics of lattice sites in amodel hexagon-to-square lattice phase

transformation, and try to address the fundamental question of
“where, when and how does lattice site arise?”

Interfaces play essential roles in microstructural evolution [2,3].
Compared to crystallographic theories of interface structures
[4e13], how these interfaces migrate in plasticity and phase
transformation is less clear. The structure of a phase boundary
dictated by the invariant plane strain (IPS) condition consists of
terraces and steps, referred to as structural ledges (SLs) or discon-
nections. It is often assumed that a collective motion of SLs within
the terrace plane accounts for the advance of the macroscopic
interface [3,10,13]. Chiao and Chen [10] reported that the steps/
ledges of the orthorhombic/monoclinic interface move synchro-
nously as an entity. This view has been followed by Pond and Hirth
[13] and is also accepted in the Book by Sutton and Balluffi [3]. But
the Moir�e ledge (ML) approach suggests that, an extrinsic ledge,
defined as the ML between two adjacent Moir�e planes, could be
responsible for the migration of a terrace-step interface [14e16].

Moreover, the practice of one-to-one lattice site correspon-
dence, which is implicitly assumed in all ledge-wise migration
mechanisms [17,18], may not be satisfied. This is where the
confusion between “site” and “atom” tends to cause trouble. While
an atom can only be at one place at a time, a “site” can move, split
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into two, or be eliminated when a phase boundary sweeps across.
This is because a site is just the location where there is significant
probability of finding an atom, so an atom occupying an old site,
when that old site is eliminated, can find itself presented with two
new sites nearby (in the one-to-two splitting case) with certain
probability to migrate to, like in quantum mechanics. For example,
if there is a significant molar volume difference between the
product and matrix phases, the number of lattice sites before and
after the transformation might be different. In order to accommo-
date the molar volume change, creation or annihilation of lattice
sites becomes necessary, such as the formation of a large amount of
excess vacancies observed in the ordering processes of Ni3Fe and
Cu3Au [19]. “Superabundant vacancies” is therefore one way to
reconcile the conservation of mass with the non-conservation of
sites when the phase boundary sweeps across. Crystal displace-
ments u(r) like in the Kirkendall effect [20] or elastic strain ε(r) (and
stress s(r)) are other ways of accommodating the large molar
volume change.

In this paper, combining the phase field crystal (PFC) method
[21e24], theory of crystallography [6,8,11,14] and nudged elastic
band method (NEB) [25,26], we investigate the atomistic mecha-
nisms of interface migration during a model diffusional phase
transformation from hexagon lattice to square lattice with large
molar volume differences. Relying on a properly time-averaged
atomic density field [27], PFC can capture lattice site movements
at diffusional time scale [28e30]. Theories of O-line, SL and coin-
cidence site lattice (CSL) are used to analyze the structure of in-
terfaces. In order to obtain a complete picture of the phase
transformation including nucleation and growth, a new approach
capable of capturing the critical nucleus configuration with atomic
resolution is developed by combining the free-end NEB algorithm
[25,26] with PFC energetics.

Note that as a general phenomenon of pattern formation and
evolution, the square to hexagon transformation has been studied
extensively in the literature [31e37], but the focus of the current
study is completely different, with particular emphases on (i) when
the orientation relationship between the parent and product pha-
ses is formed (e.g., during nucleation or growth), (ii) detailed
atomic arrangement at the interface including steps, terraces and
dislocation structures, (iii) how a high-index terrace-step interface
moves (e.g., via structural ledge or ML), (iv) whether the commonly
assumed one-to-one lattice site correspondence holds, and (v) how
the large volume change is accommodated.

2. Methods

2.1. Phase field crystal model

The PFC model uses the Helmholtz free energy to describe an
inhomogeneous system in reference to a homogenous liquid state
of density rL and the dimensionless form of the Helmholtz free
energy is given as [23],
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where nðrÞ≡rðrÞ=rL � 1 is the dimensionless number density field.
Parameters h and n are the expansion coefficients and they are
assumed unity (i.e., h ¼ n ¼ 1) in the current study. The direct pair
correlation function C2(jr � r'j) is constructed by the envelope of
two Gaussian peaks in the reciprocal space as [23],
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where kc is the intersection point of the two peaks. The wave vector
k1 ¼ 2p, k2 ¼

ffiffiffi
2

p
k1, and other symmetry-related parameters ri and

bi (i ¼ 1, 2) are determined in accordance with a square lattice [23].
Depending on temperature T, the contribution from different peaks
varies, thus leading to the formation of a hexagon phase at high
temperature where the first peak dominates and a square phase at
low temperature where both peaks play a role.

The phase diagram is determined by common tangent con-
struction on the free energy curves of different phases at each
temperature. In particular, the free energy of the liquid phase is
calculated by imposing a constant density field with nliq ¼ n. For
the solid phases, the density field for the square lattice is repre-
sented using a two-mode approximation,
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and the density field for the hexagon lattice is represented by a one-
mode approximation,
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where thewave vectors ksq¼ k1 and khex ¼ 2=
ffiffiffi
3

p
k1. The amplitudes

A1
sq, A

2
sq and Ahex can be obtained by free energy minimization.

Analytic expressions of the free energy densities for all the phases
are presented in Appendix A, and the resultant phase diagram is
shown in Fig. 1.

The transformation and interface migration are characterized by
the time-evolution of the atomic number density field n(r) that is
governed by the conserved equation of motion,

vn
vt

¼ V2dFPFC
dn

þ x (5)

where x represents a colored Gaussian noise described by

Fig. 1. Phase diagram constructed by using the free energy model presented in the
text, showing phase equilibria among the liquid (L), square (S), and hexagon (H)
phases. The yellow circles denote the system and temperatures considered in the
simulations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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