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a b s t r a c t

We extend here a “bottleneck” flow model derived earlier for incompressible fluids flowing under
creeping flow conditions [Despois, J. and Mortensen, A: Acta Materialia 53 (2005) 1381] to flow regimes
where inertial losses are no longer negligible, causing the governing flow law to deviate from Darcy's law
and become the Darcy-Forchheimer law. The proposed law is compared with measurements of the
Darcian permeability KD and of the Forchheimer coefficient C in forced-flow of air through microcellular
aluminium made by the replication process. The geometrical features of the cellular medium are varied
in terms of volume fraction of porosity (in the range of 0.66e0.86) and the average cell diameter from
(108e425 mm). As found previously in measurements with water, the Darcy permeability of the foams for
airflow is also reasonably well captured by the model. In the Forchheimer-regime the model gives good
quantitative agreement with data if one assumes that the amount of air kinetic energy that is dissipated
when passing across each bottleneck linking one pore to its neighbour along the fluid flow path cor-
responds to the difference, in a stream of constant cross-sectional area, between a uniform fluid velocity
profile and the non-uniform profile that is created by the no-slip condition along the window boundary.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the pressure drop required to drive forced flow of
a given fluid through an open-porous structure, be it a packed bed
of granular material or an open-porous cellular material, is of
considerable interest to chemical process engineering, to studies of
drainage in soils, or to forced fluid flow through microcellular
materials as used, e.g., for improved heat extraction in electronic
devices. The subject has been covered in several textbooks [1e4]
and recent reviews [5e7]. Even when limiting oneself to the sub-
class of cellular materials, i.e. leaving out the extensive body of
literature on granular porous media, a considerable amount of
experimental data is available and the various proposed modelling
approaches [8,9] have been frequently assessed [5,6,10] against
those experimental data.

In a nutshell, the pressure gradient across a sample, VP, is linked
to the flow rate, expressed by the seepage or Darcian velocity, vD

(defined as the volumetric flow rate, Q, divided by the cross-section
crossed by the flow, A), by an equation containing a linear and a
square term in Darcian velocity. This is generally known as the
Darcy-Forchheimer (or Dupuit-Darcy, or Hazen-Dupuit-Darcy)
equation [4,11]:

�VP ¼ m

KD
vD þ rCv2D (1)

The linear term in Eq. (1) is linked to viscous losses while the
second order term is variably associated with inertial losses (at
the pore scale) or form drag, cf., e.g., Lage for an extensive dis-
cussion [11]. The prefactor of the linear term in vD is the ratio of
the viscosity of the fluid, m, to the fluid permeability, KD, of the
structure, while the coefficient of the square term in vD is the fluid
density r times a form factor C. Alternative ways of writing the
prefactor of the square term in Eq. (1) comprise replacing C by
C0=

ffiffiffiffiffiffi
KD

p
; this is motivated by a desire to apply the same charac-

teristic length-scale to the inertia/form drag term as to the
permeability term. Hooman and Dukhan [9] found that, by doing
so with data gathered on cellular metal samples, C0 became a
constant for different samples, albeit only for a fairly limited range
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of pore volume fraction, while C0 increased as the volume fraction
of pores decreased [9].

Both the linear and the square contributions have been
estimated by various authors e.g. Refs. [12e19] but mostly for
low volume fraction cellular metal, produced by various pro-
cesses: coating of polyurethane precursors [12e14,20e22], in-
vestment casting (e.g. the ERG process) [23e25], or additive
manufacturing [26]. Topologically, these cellular materials have
been viewed as packings of irregular polyhedra or regular
cubes [27e34], regular dodekahedra [22], or tetrakaidekahedra
[12,13,20], whose edges are solid struts. Both, the Lord Kelvin
[35] and the Weaire-Phelan [36] tetrakaidekahedra have been
considered [37]. The analysis is usually based on known ex-
pressions for the flow resistance of an individual strut or a
limited number of struts viewed as the building blocks of the
cellular material. Varying the cross-section of the struts leads
to different flow resistance for a given volume fraction [14].
The characteristic length scale and the volume fraction of solid
are implicitly given by the typical length of a strut and the
length-to-thickness ratio of the struts, respectively. While these
models are appropriate for low volume fraction solid cellular
materials, the equations can formally be extrapolated to high
volume fraction solids, while maintaining the topology and
hence the open-celled nature, and gradually reducing the
opening of the pore windows as the solid fraction increases.

Another class of models comprises the “equivalent-bed-of-
spheres” models [6,10,38e40]. These make use of Ergun's equation
[41] initially developed for packed particles by approximating a
cellular material as an equivalent bed of spheres, the size of which
is chosen such that they have the same solid fraction and the same
specific surface area as the cellular material to be modelled. To-
pological features, such as the connectivity of the pore space, are
not accounted for in such models.

High solid fraction cellular materials (of pore volume fraction
roughly in the range 0.6e0.9) can be produced by compressing low
volume fraction solid material; however, these can also be pro-
duced directly, using various processes. Replication is one of the
most widely used of such processes. It comes in two variants, one
based on powder metallurgy, the other on liquid metal infiltration
[7]. Both routes produce cellular materials that contain pores, the
geometry of which is that of the assembly of close-packed partially
sintered spaceholder particles that are removed by dissolution
when producing the foam. Adjacent pores are hence connected by
windows, the opening of which depends on the degree of space-
holder particle densification [42], and also on the ratio of
spaceholder-to-matrix material in the powder metallurgical
variant of the process, or on the infiltration pressure in the
infiltration-based variant of the process [43].

It has been reasoned for cellular materials made by replication
that the windows connecting the cells are bottlenecks that control
their permeability in the creeping flow regime. This has led to the
formulation of analytical predictions of their Darcian permeability,
KD, which have been shown to agree well with experimental data
[42] [43]. In the present contribution we extend the model by
Despois and Mortensen [42] to flow rates beyond the creeping flow
regime. We then confront the predictions of the model to experi-
ments conducted on microcellular aluminium made by replication,
exploring pore volume fractions from 0.66 to 0.86 and nominal
pore sizes from 108 to 425 mm.

2. Theory

The model presented by Despois and Mortensen [42] addressed
creeping viscous incompressible fluid flow through replicated
microcellular materials. It is extended here to account for i) inertial

losses, and ii) compressibility of the flowing fluid. The microcellular
material considered here was made by replication, i.e., it contains
pores corresponding to the spherical spaceholders that formed the
packed preform whose open pore space was filled with another
material (by infiltration or using powder processing). The pores are
connected with their nearest neighbours at windowswhose radius,
rw, depends on the spaceholder particle radius, rp, and the space-
holder volume fraction before and after preform densification, D0
and D, respectively (we use the notation of the earlier paper by
Despois and Mortensen [42], itself based on the notation of Ashby
[44]). Following Helle [45] the window size is linked to the
spaceholder size by

rw
rp

¼ 1ffiffiffi
3

p
�
D� D0

1� D0

�1=2

: (2)

For the tapping density of the spaceholders, if the particles are
spherical, one usually takes D0 z 0.64, i.e. the random dense
packing density of equisized spheres [46]. If the particles are not
spherical, their initial tapping density D0 will vary somewhat with
particle size and particle shape. Hence, D0 is left as a parameter in
the derivation; note that it is nevertheless not a free parameter,
since it can be measured for the relevant spaceholder particle
preforms.

As in Ref. [42] we assume that for every cell the flowing fluid
enters each pore through one window and exits it through another
opposite window, the line linking the two windows being roughly
aligned with the direction of the applied pressure gradient.
Consider now a slice of the microcellular material, one pore radius
(rp) thick and a square meter in cross section, oriented normal to
the fluid flow direction: there will be onewindow per pore limiting
flow of the fluid, cf. Fig. 1. The number of pores, n, and hence of
windows per meter squared, is given by

Fig. 1. Schematic drawing of the pore space considered in this work, indicating the
window diameter, 2rw, and the pore diameter, 2rp.
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