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Elastic interactions between nano-scale defects in irradiated materials
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a b s t r a c t

Closed form expressions are derived for the energy of elastic interaction between dislocation loops, and
between dislocation loops and vacancy clusters, to enable simulations of elastically biased microstruc-
tural evolution of irradiated materials. The derivations assume the defects are separated by distances
greater than their size. The resulting expressions are well suited for real-space simulations of micro-
structural evolution involving thousands of elastically interacting defects in 3D. They play a similar role
to interatomic potentials in molecular dynamics simulations.

© 2016 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Real-space, real-time simulation of microstructural evolution
occurring in materials under irradiation is an outstanding problem
in computational materials science. A dislocation-based treatment
of mechanical deformation, which is essential for interpreting
experimental observations of radiation hardening and embrittle-
ment, requires evaluating the energy of interaction between
dislocation loops and other defects, such as vacancies and cavities,
in real space, where the loops are treated as three-dimensional
objects characterized by their position, size, shape, and spatial
orientation.

It is well established that the occurrence of material-dependent
characteristic temperatures, at which the response to irradiation
changes significantly, is related to activation energies of formation
and migration of defects. These energies vary from a fraction of an
eV to several eV [1,2]. The energy scales of elastic interactions be-
tween defects are similar, depending on the size of defects and the
distance between them [3,4]. Whereas the spectrum of activation
energies for reactions between defects, or migration of defects, is
discrete, the energies of elastic interactions are distributed
continuously. Thus, although elastic interactions do not give rise to
discrete “microstructural transitions” at certain temperatures, their
influence on microstructural evolution is just as strong as the

thermally activated formation, migration and reaction of defects
[5]. These long-range interactions are the subject of this paper.

To what extent are long-range elastic interactions included in
current techniques to model microstructural evolution under
irradiation? There are two principal approaches. The rate theory
approach [6], and its more recent generalizations based either on
the Master and Fokker-Planck equations [7], or using the cluster
dynamics equations [8,9], follow the evolution of ensemble-
average densities of defect species. Rate theory equations assume
that defect densities are spatially homogeneous [8,9], or that they
vary slowly as functions of spatial coordinates [10]. Elastic in-
teractions are included in rate theory through the use of effective
parameters, called bias factors [6,11,12]. The second approach is to
use kinetic Monte Carlo (kMC) simulations where defects are
treated as mobile objects undergoing stochastic motion [13,14]. It is
not straightforward to include long-range elastic interactions be-
tween defects in such simulations [15e17].Wen et al. [18] modelled
interactions between small dislocation loops and point defect
clusters using kMC simulations that included elastic interactions.
These methods were also used by Wen et al. [19] to model the
evolution of clouds of self-interstitial clusters around edge dislo-
cations, and the subsequent pinning of these dislocations.

Langevin dynamics simulations of mobile elastically interacting
nano-defects [3,4] show that these interactions strongly influence
the evolution of microstructure, leading to trapping of defects, and
giving rise to defect clustering and the formation of rafts of defects.
Rafts of defects are routinely observed experimentally in materials
exposed to irradiation [20e26].

* Corresponding author.
E-mail addresses: sergei.dudarev@ukaea.uk, s.dudarev@imperial.ac.uk

(S.L. Dudarev), a.sutton@imperial.ac.uk (A.P. Sutton).

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier .com/locate/actamat

http://dx.doi.org/10.1016/j.actamat.2016.11.060
1359-6454/© 2016 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Acta Materialia 125 (2017) 425e430

mailto:sergei.dudarev@ukaea.uk
mailto:s.dudarev@imperial.ac.uk
mailto:a.sutton@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2016.11.060&domain=pdf
www.sciencedirect.com/science/journal/13596454
www.elsevier.com/locate/actamat
http://dx.doi.org/10.1016/j.actamat.2016.11.060
http://dx.doi.org/10.1016/j.actamat.2016.11.060
http://dx.doi.org/10.1016/j.actamat.2016.11.060


The computational efficiency of a Langevin dynamics simulation
depends primarily on the speed of evaluation of forces acting be-
tween defects. In isotropic elasticity the energy of interaction be-
tween two dislocation loops is given exactly by Blin's formula. But
this involves computing line integrals around the perimeter of each
loop [27,4], which requires too much computational time when
there are very many loops.

To overcome this difficulty we present closed form expressions
for the energy of elastic interaction between loops separated by
distances larger than their size. The most general case of loops with
different Burgers vectors and different loop normals, and with the
loops separated by an arbitrary vector, is solved and shown to
depend on ten angles. Although the energy of elastic interaction is a
function of ten independent angles, it is remarkable that it has a
closed form. Simpler cases, one of which is well known, involving
prismatic loops only, are derived as special cases of the general
formula.

Electron microscope observations of microstructures due to
irradiation [20e26] show that at any moment most loops are
separated by distances greater than their size. Reactions between
loops, resulting in their annihilation or coalescence, and occurring
only when the distance between them is virtually zero, typically
involve a small faction of all the defects present in the material.

Our study provides further support for the importance of elastic
interactions in the evolution of microstructures of these defects. At
distances larger than their sizes, the energy of interaction between
two dislocation loops separates into purely radial and purely
angular dependencies. As a result the angular dependence persists
as the distance between the defects increases.

In the next section an approximate formula is derived for the
interaction energy between two loops in an infinite anisotropic
elastic medium. This formula is directly analogous to the interac-
tion energy between two point defects, involving their elastic
dipole tensors. Exploiting this analogy an expression is obtained for
the dipole tensor of a small dislocation loop. When the isotropic
elastic approximation is made, an approximate closed form
expression is derived for the stress field of an arbitrary small loop,
and the interaction energy between two arbitrary loops separated
by more than their sizes. Using the dipole tensors for a small loop
and an isotropic point defect cluster, the interaction energy be-
tween them is given in an explicit analytical form. The assumptions
underlying the closed form expressions are tested by comparing
the approximate interaction energies between prismatic loops with
exact numerical results obtained from Blin's formula, where the
simplifying approximations adopted in this paper, are not made. It
is shown that the approximations are remarkably robust and an
explanation for their robustness is offered.

2. Interaction energy between small loops

Consider two planar dislocation loops with Burgers vectors bð1Þ

and bð2Þ, loop normals bnð1Þ and bnð2Þ, loop areas Að1Þ and Að2Þ, and
loop centres at rð1Þ and rð2Þ. Let r ¼ rð1Þ � rð2Þ. Throughout the paper
it is assumed the elastic continuum is infinite with no free surfaces.
The elastic interaction energy between the loops is given exactly by
the following equivalent surface integrals taken over the areas of
the loops:

Eint ¼
Z
Að2Þ

bð2Þi s
ð1Þ
ij

bnð2Þ
j dS ¼

Z
Að1Þ

bð1Þi s
ð2Þ
ij

bnð1Þ
j dS: (1)

Throughout the paper summation is implied on repeated sub-
scripts. In Eq. (1) the interaction energy is the negative of the work
done by the stress field of one loop when the other loop is created

in its presence (see Ref. [27], p.106). In the following it is assumed
the separation between the loops is much larger than the sizes of
the loops. This approximation enables each loop to be treated as a
point-like defect in which the stress field of the other defect is
approximately constant. With this approximation Eq. (1) becomes:

Eint ¼ Að2Þbð2Þi s
ð1Þ
ij

�
rð2Þ

�bnð2Þ
j ¼ Að1Þbð1Þi s

ð2Þ
ij

�
rð1Þ

�bnð1Þ
j : (2)

Volterra's formula [28] for the displacement field at rð1Þ due to
the small loop centred at rð2Þ becomes:

uð2Þj

�
rð1Þ

�
¼ Ckpimb

ð2Þ
k Að2ÞGij;m

�
rð1Þ � rð2Þ

�bnð2Þ
p ; (3)

where Gijðrð1Þ � rð2ÞÞ is the elastic Green's function relating the
displacement uiðrð1ÞÞ to a point force fjðrð2ÞÞ :
uiðrð1ÞÞ ¼ Gijðrð1Þ � rð2ÞÞfjðrð2ÞÞ. Commas denote differentiation,
thus Gij;mðrÞ ¼ vGijðrÞ=vrm. The elastic constant tensor is Cijkl.

Hooke's law then yields the stress field at rð1Þ caused by the
second loop at rð2Þ:

s
ð2Þ
ab

�
rð1Þ

�
¼ Cabjqu

ð2Þ
j;q

�
rð1Þ

�
¼ CabjqCkpimb

ð2Þ
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�
rð1Þ � rð2Þ

�bnð2Þ
p :

(4)

Inserting this equation into the second expression on the right
of Eq. (2), the following equality is obtained:

Eint ¼ Pð1Þqj Gij;mq

�
rð1Þ � rð2Þ

�
Pð2Þmi ; (5)

which is also the equation for the interaction energy between two
point defects with dipole tensors Pð1Þ and Pð2Þ (see equation (4.100)
of Ref. [29]). For the dislocation loops the dipole tensors are:

PðiÞfg ¼ 1
2
CfgksA

ðiÞ
�bnðiÞ

s bðiÞk þ bðiÞs bnðiÞ
k

�
: (6)

Within the approximation of loops separated by distances much
greater than their size Eq. (5) is exact, including full elastic
anisotropy. Eq. (5) is also the long range interaction energy between
point defect clusters, provided their separation is much greater
than their size. It follows that Eq. (5) may also be used to evaluate
the interaction energy between dislocation loops and vacancy or
interstitial clusters, provided the defects are smaller than their
separation.

2.1. The isotropic elastic approximation

Making the approximation of elastic isotropy, the elastic con-
stant tensor becomes:

Cijkl ¼ l dij dkl þ m
�
dik djl þ dil djk

�
; (7)

where m is the shear modulus, l ¼ 2mn=ð1� 2nÞ and n is Poisson's
ratio. The elastic dipole tensor for a small loop, as given by Eq. (6), is
now

Pij ¼ mbA
��bbibnj þ bni

bbj�þ 2n
1� 2n

bbkbnkdij

�
; (8)

where b ¼ jbj, bb ¼ b=b and bbj ¼ bj=b.
The isotropic elastic Green's function GikðrÞ is given by Ref. [28]:

GikðrÞ ¼
1

16pmð1� nÞr ½ð3� 4nÞdik þ bribrk�; (9)
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