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a b s t r a c t

When a usual material is loaded statically at surfaces, fine fluctuations of surface strain diminish fast in
the material volume with the distance to the surface, a phenomenon widely known as the Saint-Venant
edge effect. In this paper, highly nonlocal discrete lattices are explored to demonstrate structural met-
amaterials featuring reversal of the Saint-Venant edge effect. In these materials, certain coarse patterns of
surface strain may decay faster than the finer ones. This phenomenon is shown to arise from anomalous
behavior of the Fourier modes of static deformation in the material, and creates opportunities for
blockage, qualitative modification and in-situ recognition of surface load patterns. Potential applications
and useful practical techniques of spectral analysis of deformation, density of states and phase diagram
mapping are outlined.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The notion of metamaterials refers to an exciting class of man-
made material systems with engineered internal structure
(embedded resonators, elastic links, metastable elements, etc.)
leading to a negative or reverse effective material property. Such a
property usually occurs due to a nontrivial collective behavior of
many individual structural elements functioning in a synergistic
manner. While basic properties of those individual elements can be
simple (linear), the interesting collective behavior is owed to a
cooperation between the elements achieved with a proper design
of their internal structure and interactions. Generally, photonic/
electromagnetic, phononic/acoustic and mechanical metamaterials
are distinguished [1e34].

Photonic metamaterials are the earliest known class of meta-
materials, where the negative effective electrical permittivity (ε)
and electromagnetic permeability (m) are attained simultaneously
at the expense of a microscopic superlattice resonator structure
leading to a dispersive, nonlinear photonic spectrum. A negative
refractive index and the absence of light reflection at an interface of
a metamaterial with ε < 0 and m < 0 and a usual media was first
predicted in a 1968 publication [1]. These basic phenomena, in turn,
imply amazing practical opportunities, such as superlense and
“invisibility cloak” applications [1e7]. One more recent class of
photonic metamaterials are plasmonic systems [8e14] featuring
nonlinear spectra of collective electron excitation frequencies. Such

spectra can provide an efficient generation of higher frequency
harmonics, and geometrical and spectral localization of the inci-
dent photon energy, being key phenomena for the enhanced pho-
tovoltaics, photocatalytic water splitting and other applications
[8e14].

Phononic and acoustic metamaterials are dynamical material
systems with simple constitutive properties of the individual ele-
ments, but counterintuitive collective properties, such as the
negative effective mass density and others [15e27]. These unusual
collective properties can be realized from the nonlinear vibration
frequency spectra, or dispersion relationships u(k), where k is the
Fourier wave vector, obtained by applying Fourier transform in time
and space to a structural or multi-body dynamics equation. Op-
portunities for very interesting phenomena, such as acoustic
shielding and cloaking arise from the gaps between distinct
dispersion branches ui(k), leading to a wide range of important
applications ranging from sound insulation and vibration energy
harvesting to nondestructive testing and earthquake engineering.

Structural & mechanical metamaterials [28e34,46e48] show
quasistatic responses to loads that can be interpreted as a negative
effective elastic modulus or a negative Poisson ratio by a combi-
nation of simple microstructural elements, bars and springs. One
recent development [31e34], including by this author and a co-
worker [33,34], also uses a structural bistability at the unit cell
level that could deploy a polymorphic type phase transformation in
the entire material. If properly designed, such a phase trans-
formation can lead to a contraction of the material in the direction
of an increasing external load, the negative extensibility
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phenomenon. Origami structures provide another interesting type
of mechanical metamaterials [46e48] where negative Poisson's
ratio, bending and twisting stiffness are either analytically
expressed or numerically observed. The work by Silverberg and co-
workers [48] is also an example of using bistability of a unit cell to
fold reprogrammable mechanical metamaterials based on origami
structures.

In this paper, we provide a mathematical foundation and
demonstrate the paths toward design and fabrication of a class of
structural metamaterials featuring a Reverse Saint-Venant (RSV)
edge effect, or shorter the RSV metamaterials. When a usual mate-
rial or structure is loaded statically at surfaces, fine fluctuations of
surface strain diminish fast in the material or structure interior
with distance to the surface, a phenomenon widely known as the
Saint-Venant edge effect, e.g. Refs. [35,36]. In this paper, we have
explored some discrete lattices with a higher degree of nonlocality
as possible engineered base structures of the RSVmetamaterials. In
these lattices, certain coarse patterns of surface strain may decay
faster than the finer ones. More remarkably, such materials will be
shown to have an ability to completely block or qualitatively
modify certain types of static deformation at surfaces.

The Saint-Venant edge effect is perceived so naturally that one
could hardly imagine any violations of it in a material system.
Nonetheless, in Section 2, we provide a rigorous proof of concept,
followed by discussions of interesting practical opportunities in
Section 3, including surface arrest of static deformation and qual-
itative modification of strain and stress patterns. Conclusions are
given in Sections 4. Practical opportunities of the RSV meta-
materials are discussed in the context of the density of states
calculation, spectral analysis of deformation and phase diagram
mapping.

2. Fourier modes of free static deformation

We generally suggest that the Saint-Venant edge effect reversal
may occur in materials with internal micro- or mesostructure
featuring nonlocal interactions. Analysis of these interactions and
the resultant effective material properties requires a discrete
nonlocal elastic formulation.

Below in this section we suggest a formulation leading directly
to the desired metamaterial behavior in a simple but rigorous
manner. First we will show that in a local isotropic elastic contin-
uum, only the usual Saint-Venant behavior is possible, and the
nonlocality has to be a necessary condition for the sought behavior.

For this discussion, it will be convenient to introduce a
nonstandard property of an elastic medium or lattice that we may
call the Fourier spectrum of deformation decay parameters, or
shorter, deformation decay spectrum. This spectrum is a key element
of the analytical method offered here, and it exists for any local or
nonlocal continuum or a discontinuous structure. In the further
discussion (Sections 2.2e2.5) we will see that the Saint-Venant
edge effect reversal and surface load arrest phenomena would
require occurrence of asymptotic bandgaps in the spectrum. In turn,
such bandgaps will imply nonlinear and non-monotonous spectral
behaviors, only possible in nonlocal media. This spectrum is
somewhat analogous, but not similar to the acoustic wave fre-
quency spectrum of a dynamical structure [15e27], where the
bandgaps can lead to an acoustic metamaterial.

2.1. Deformation decay spectrum of a continuum solid

Consider a state of plain strain in a continuum half-plane for
boundary conditions u(0,y) and v(0,y), governed by the homoge-
nous Navier's equations [37] over x > 0,
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Since any deformation must disappear when x / ∞, it is
interesting to consider a fundamental solution as a decaying Fourier
mode of free static deformation (at real positive h and complex C):

uðx; yÞ ¼ C1e
�hxeiqy; vðx; yÞ ¼ C2e

�hxeiqy; q2ð � p;pÞ (2)

Here, q is a real-valued Fourier parameter of the mode and i is
the imaginary unit. When necessary, two independent real-valued
solutions can be constructed by taking separately the real and
imaginary parts of (2).

Substituting (2) into the governing equation (1) gives two
characteristic equations,

2h2ðn� 1ÞC1 þ iqhC2 � q2ð2n� 1ÞC1 ¼ 0;
h2ð1� 2nÞC2 � iqhC1 þ 2q2ðn� 1ÞC2 ¼ 0

(3)

These equations indicate that equation (2) can be a true solution,
indeed, but only if h ¼ ±q and C2 ¼ HiC1. A solution satisfying
specific boundary conditions can be obtained as a superposition of
the modes equation (2) with the amplitudes determined by stan-
dard Fourier methods. The value h should remain positive for any q,
and therefore, we can write

hðqÞ ¼ jqj (4)

This relationship between the decay parameter and the Fourier
parameter, Fig. 1, represents the simplest deformation decay spec-
trum of an elastic medium or structure. It applies to any homoge-
nous and isotropic material governed by equation (1). We will also
call such a relationship the “h-distribution” below. It will become
more sophisticated in the analysis of discrete lattices.

Physical meaning of the decaying mode solution (2,4) can be
illustrated as follows. Assume there is a surface traction at x ¼ 0
leading to the boundary displacements,

uð0; yÞ ¼ acosðqyÞ; vð0; yÞ ¼ asinðqyÞ (5)

Then, the real amplitude a of these displacements will diminish
at x > 0 with the factor eej qj x, and all strain and stress components
will decrease with the same factor as well. Thus, the value h ¼ jqj
can be interpreted as a basic exponential decay parameter of the

Fig. 1. Deformation decay spectrum (the h-distribution) of the elastic continuum (1).
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