
Full length article

Theoretical model for predicting uniaxial stress-strain relation by dual
conical indentation based on equivalent energy principle
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a b s t r a c t

For conical indentation, the strain energy is a function of the semi-vertical cone angle, the indentation
depth and the stress-strain relation. According to equivalent energy principle of representative volume
elements (RVE) and the classical cavity assumption for material deformation region, the function with
dual-parameters about volume and deformation is theoretically derived in the present study. This
original equivalent-energy indentation model (EIM) is capable of forward-predicting load-depth relation
and reverse-predicting uniaxial stress-strain relation for ductile materials only based on loading part of
indentation. Further analyses show that the forward and reverse predicted results from EIM method are
in excellent agreement with those by finite element analyses (FEA). Macro conical indentation experi-
ments on five types of metals have been conducted using conventional indenters which are similar to
Rockwell sclerometer. Consequently, the stress-strain relations predicted by EIM are quite close to those
from standard tensile tests.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Compared with traditional tension and compression tests,
conical indentation is more convenient to get uniaxial stress-strain
relationships of materials in the slight-destructive inspection of in-
service structures. The elastic solution of conical indentation
referring to Boussinesq's solution [1] was developed by Sneddon
[2], but the application of the elastic solution was restricted in
engineering practice. For the blunted indentation of elastic-
perfectly plastic materials, the representative strain εr and the
cavity assumption were proposed by Tabor [3] and Johnson [4],
respectively, which were helpful in describing the characteristic of
indentation strain field. In the latest thirty years, the indentation
techniques have been developed rapidly for the applications of
material testing in MEMS, NEMS, and bioengineering etc. [5e7].
The O&P method to estimate the hardness and elastic modulus of
materials was successfully proposed by Oliver and Pharr [8]. After
that, there has come up many methods to acquire elastoplastic
properties of materials. But until now, all these indentation
methods are dependent on a great amount of FEA data and can be

mainly summed up in two categories. One directly constructs
complicated fitting relations between uniaxial stress-strain
response and indented loading-unloading curve [9e21] by using
representative strain εr and stress sr. The other tries to establish
complex mathematical regression equations in relation to the ratio
of elastic work to plastic work (We/Wt), loading curvature C, initial
unloading stiffness S and the constitutive parameters of materials
(E, sy, n) based on dimension analysis [22e25]. These two types of
indentation methods are strongly rely on FEA regression, so that
testing methods from their complicated formulas are not generally
applicable for materials and require high precision of indentation
devices. In addition, the forward-predictions of load-depth relation
and reverse-predictions of stress-strain relation by these indenta-
tion methods are all dependent on indented loadingeunloading
curve [9e25]. Up to now, there is no research can be found that the
parameters of constitutive relationship is only determined by using
the single loading curvature C without unloading procedure in the
indentation tests.

For materials obeying isotropic, Hollomon power-law, isotropic-
hardening and von-Mises criterion, a new indentation model based
on equivalent energy principle is established in present study to
directly describe the relationship among strain energy, geometrical
dimensions, indentation depth and Hollomon parameters, which
has dual-parameters, the effective volume coefficient and the* Corresponding author.
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effective strain coefficient. This equivalent-energy indentation
model is hereafter referred to as EIMmethod. By EIMmethod, both
forward-prediction of load-depth relationship and reverse-
prediction of uniaxial stress-strain relationship can be directly
determined from the indentation loading curves. The validity and
capacity of EIM method have been certified by finite element an-
alyses (FEA) and conical indentation tests on many types of
materials.

2. The theoretical model

2.1. The equivalent energy method

It is well-known that the complex plastic deformation behavior
of structures can be predicted by uniaxial stress-strain relation of
represent volume element (RVE) of material under proportional
loading condition. For most of engineering materials, the uniaxial
stress-strain relation is commonly described by Hollomon model
(see Fig. 1) [26].

s ¼
�
Eε s � sy
Kεn s � sy

(1)

where s is the true stress, ε the total true strain, E the Young's
modulus, sy the initial yield stress, n the strain hardening exponent,
and K the strength coefficient (K ¼ Ensy

1�n). Its dimensionless form
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where εy is the initial yield strain and εy ¼ sy/E.
For an arbitrary point (x, y, z) in the indented deformation region

suggested by Johnson [4] in Cartesian coordinates (shown in Fig. 2),
strain energy U of arbitrary deformation region is expressed as

U ¼ ∭
U

uðx; y; zÞdxdydz (3)

where U is the effective deformation region and u(x, y, z) is the
strain energy density at an arbitrary point within the RVE.

As the strain energy density u is continuous within region U,
there exists one point M(xM, yM, zM) (see Fig. 2) at which the strain
energy density uM(xM, yM, zM) of RVE is equal to mean result in
region U. According to integral mean value theorem, it has

uMðxM; yM; zMÞ ¼
∭
U

uðx; y; zÞdxdydz

V
(4)

where V is the total volume of region U. In Eq. (4), the point M(xM,
yM, zM) is regarded as the equivalent center of strain energy U.

Eq. (4) has established the relation between total strain energy U
and the strain energy density uM at the median point M. Next, a
relation between the strain energy density of three-dimensional
stress state and that of equivalent stress state can be built. Fig. 3
(a) shows the normal stress-strain state at point M in U. For the
stress state of RVE at M(x, y, z) in conical indentation, von-Mises
criterion gives an equivalent relation between the strain energy
density of three-dimensional stress state, uM and that of equivalent
stress state, ueq (see Fig. 3 (a) and (b)),

uM ¼ ueq
��
ðxM;yM;zMÞ (5)

Therefore, according to Eqs. (1) and (5), the equivalent strain
energy density of RVE around point M is deduced as follows.

ue ¼
Zεy
0

s dε ¼ Eε2y
2

¼ Kε1þn
y

2
(6.1)

where ue is the initial linear-elastic strain energy density (see
Fig. 1), then

uep ¼
Zεeq
εy
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Zεeq
εy
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where uep is the elastoplastic strain energy density. Further,
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(6.3)

where ueq is the total equivalent strain energy density.
Combining Eqs. (4)e(6.3), the total strain energy U is given as

U ¼ ueq
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where ueq is mean - value of equivalent strain energy density in
region U.

According to work-energy principle, the total work done W by
external load is equal to total strain energy U if taking no account of
dissipative heat energy from friction etc. i.e.

Fig. 1. The uniaxial stress-strain relation and strain energy density of indented
materials.

Fig. 2. The deformation region of conical indentation based on cavity assumption.
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