Accepted Manuscript

A time-variant model of surface chloride build-up for improved service life predictions

Mahmoud Shakouri, David Trejo

PII: S0958-9465(17)30254-8

DOI: 10.1016/j.cemconcomp.2017.08.008

Reference: CECO 2887

To appear in: Cement and Concrete Composites

Received Date: 14 March 2017

Revised Date: 16 July 2017

Accepted Date: 14 August 2017

Please cite this article as: M. Shakouri, D. Trejo, A time-variant model of surface chloride build-up for improved service life predictions, *Cement and Concrete Composites* (2017), doi: 10.1016/j.cemconcomp.2017.08.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 2	A time-variant model of surface chloride build-up for improved service life predictions
3	Mahmoud Shakouri ^{a,1} and David Trejo ^a
4 5	^a School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA
6	
7	
8	Abstract
9	Current service life models for predicting the time to chloride-induced corrosion initiation of
10	steel reinforcement in concrete structures are based on a hypothesized surface chloride
11	concentration, C_s , as a boundary condition. This is either assumed to be constant or varies with
12	time, generally disregarding other factors that influence C_s . For example, Fickian models use a
13	constant C_s and existing time-variant models assume C_s is only a function of time. In this paper,
14	an improved time-variant C_s model is hypothesized using general physical concepts and is then
15	validated by an empirical study. The proposed model, as opposed to the existing time-variant
16	models, not only accounts for the variability of C_s with exposure time but also incorporates the
17	effects of time to exposure and the effects of the concentration of chlorides in the exposure
18	environment. The model assumes that C_s is sigmoidal in shape with an asymptote that is a
19	function of the concentration of chlorides in the environment. The input variables for the
20	proposed model were selected based on best subset sampling analysis on the results of the
21	experimental work to determine the influence of water-to-cement ratio, time to exposure, the
22	concentration of chlorides in the exposure environment, and exposure time on C_s . The accuracy
23	of the proposed model is assessed versus existing time-variant C_s models and the results indicate
	* Corresponding author

E-mail: shakourm@oregonstate.edu (M. Shakouri)

Download English Version:

https://daneshyari.com/en/article/5436754

Download Persian Version:

https://daneshyari.com/article/5436754

<u>Daneshyari.com</u>