Accepted Manuscript

3D full field study of drying shrinkage of foam concrete

Keshu Wan, Gen Li, Shaohua Wang, Chaoming Pang

PII: S0958-9465(16)30893-9

DOI: 10.1016/j.cemconcomp.2017.06.001

Reference: CECO 2838

To appear in: Cement and Concrete Composites

Received Date: 30 December 2016

Revised Date: 28 May 2017 Accepted Date: 1 June 2017

Accepted Date: 1 June 2017

Please cite this article as: K. Wan, G. Li, S. Wang, C. Pang, 3D full field study of drying shrinkage of foam concrete, *Cement and Concrete Composites* (2017), doi: 10.1016/j.cemconcomp.2017.06.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

3D Full field study of drying shrinkage of foam concrete

Keshu Wan*, Gen Li, Shaohua Wang, Chaoming Pang

Jiangsu Key Laboratory of Construction Materials, School of Materials Science

and Engineering, Southeast University, Nanjing, 211189, China

*Corresponding author. Tel /Fax: +86-25-52090667, E-mail: keshuwan@seu.edu.cn

Abstract

Drying shrinkage (DS) of concrete is important. The graded and heterogeneous DS

inside the concrete may lead to cracking and further deteriorate the mechanical and

durability properties. To elaborate the drying gradient and deformation heterogeneity,

the full field DS distributions of foam concrete have been studied using an expanded

Digital Volume Correlation method, which has a high precision of 0.01 voxel (about

0.6 µm) in displacement. The effectiveness of DS in local sub-volume is verified from

bulk shrinkage of the whole specimen. The DS gradient due to drying is clearly

revealed, and DS heterogeneity in spatial domain and in frequency domain is

identified. A full view of foam concrete's drying processes is built. At the middle

drying stage, three different states exist simultaneously, especially a drying front

arises with high drying shrinkage.

Keywords: Drying shrinkage; Full field; Digital volume correlation; Foam concrete

1

Download English Version:

https://daneshyari.com/en/article/5436787

Download Persian Version:

https://daneshyari.com/article/5436787

<u>Daneshyari.com</u>