Accepted Manuscript

Influence of nucleation seeding on the performance of carbonated MgO formulations

N.T. Dung, C. Unluer

PII: S0958-9465(17)30090-2

DOI: 10.1016/j.cemconcomp.2017.07.005

Reference: CECO 2854

To appear in: Cement and Concrete Composites

Received Date: 25 January 2017

Revised Date: 15 June 2017 Accepted Date: 5 July 2017

Please cite this article as: N.T. Dung, C. Unluer, Influence of nucleation seeding on the performance of carbonated MgO formulations, *Cement and Concrete Composites* (2017), doi: 10.1016/j.cemconcomp.2017.07.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Influence of nucleation seeding on the performance of carbonated MgO formulations
2	
3	N.T. Dung ^a , C. Unluer ^{a.} *
4	
5	^a School of Civil and Environmental Engineering, Nanyang Technological University,
6	50 Nanyang Avenue, Singapore 639798
7	
8	* Corresponding author. Tel.: +65 91964970, E-mail address: ucise@ntu.edu.sg
9	
10	
11	Abstract
12	
13	The continuation of the hydration and carbonation reactions within reactive MgO cemen
14	formulations is inhibited by the formation of hydrate and carbonate phases around MgC
15	particles, resulting in a low MgO utility and limited mechanical performance. This study
16	introduces carbonate seeds into the pore space of MgO-based concrete mixes to enable the
17	nucleation and growth of carbonates on the seed surfaces. The influence of seeds on the
18	hydration and carbonation capability, mechanical performance and microstructural
19	development was evaluated through isothermal calorimetry, water absorption and
20	compressive strength measurements, along with TGA, XRD and SEM analyses. The
21	introduction of \leq 1% seed within the initial mix design increased the carbonate phase content
22	and improved carbonation degree by up to 96% by increasing the availability of Mg(OH)2 for
23	carbonation. The dense formation of carbonates in seeded samples enabled improved
24	microstructures and 28-day strengths of 64 MPa, which were 33% higher than unseeded
25	samples.
26	
27	
28	Keywords: MgO; Hydration; Carbonation; Compressive strength; Microstructure

Download English Version:

https://daneshyari.com/en/article/5436796

Download Persian Version:

https://daneshyari.com/article/5436796

<u>Daneshyari.com</u>