Accepted Manuscript

Service life and global warming potential of chloride exposed concrete with high volumes of fly ash

Philip Van den Heede, Michel De Keersmaecker, Alice Elia, Annemie Adriaens, Nele De Belie

PII: S0958-9465(17)30292-5

DOI: 10.1016/j.cemconcomp.2017.03.020

Reference: CECO 2808

To appear in: Cement and Concrete Composites

Received Date: 15 July 2015
Revised Date: 13 July 2016
Accepted Date: 21 March 2017

Please cite this article as: P. Van den Heede, M. De Keersmaecker, A. Elia, A. Adriaens, N. De Belie, Service life and global warming potential of chloride exposed concrete with high volumes of fly ash, *Cement and Concrete Composites* (2017), doi: 10.1016/j.cemconcomp.2017.03.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Figure 1. Origin of the cylindrical specimens for diffusion testing (a), schematic overview of the sample geometry and the position of the rebar (diameter: 10 mm) for the prismatic specimens $(200\times160\times140 \text{ mm}^3)$ used for monitoring the corrosion potential and determination of the critical chloride content (b), profile grinding details (c).

Download English Version:

https://daneshyari.com/en/article/5436871

Download Persian Version:

https://daneshyari.com/article/5436871

<u>Daneshyari.com</u>