
Author's Accepted Manuscript

Nanoscale synthesis of single-phase forsterite by reverse strike co-precipitation and its high optical and mechanical properties

Rúbia Young Sun Zampiva, Luiz Henrique Acauan, Leonardo Moreira dos Santos, Ricardo Hauch Ribeiro de Castro, Annelise Kopp Alves, Carlos Pérez Bergmann

vww.elsevier.com/locate/ceri

PII: S0272-8842(17)31877-1

http://dx.doi.org/10.1016/j.ceramint.2017.08.201 DOI:

CERI16155 Reference:

To appear in: Ceramics International

Received date: 7 July 2017 24 August 2017 Revised date: Accepted date: 25 August 2017

Cite this article as: Rúbia Young Sun Zampiva, Luiz Henrique Acauan, Leonardo Moreira dos Santos, Ricardo Hauch Ribeiro de Castro, Annelise Kopp Alves and Carlos Pérez Bergmann, Nanoscale synthesis of single-phase forsterite by reverse strike co-precipitation and its high optical and mechanical properties, Ceramics International, http://dx.doi.org/10.1016/j.ceramint.2017.08.201

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanoscale synthesis of single-phase forsterite by reverse strike coprecipitation and its high optical and mechanical properties

Rúbia Young Sun Zampiva^{1,2*}, Luiz Henrique Acauan³, Leonardo Moreira dos Santos⁴, Ricardo Hauch Ribeiro de Castro², Annelise Kopp Alves¹, Carlos Pérez Bergmann¹

¹Department of Materials Engineering, Federal University of Rio Grande do Sul- UFRGS.

Osvaldo Aranha 99, Porto Alegre, RS 90035- 190, Brazil

²Department of Materials Science and Engineering, University of California Davis –

UCDavis. 1 Shields Ave, Davis, CA 95616, United States

³Department of Aeronautics and Astronautics, Massachusetts Institute of Technology-MIT,

Cambridge, Massachusetts 02139, United States

⁴School of Chemistry, Pontifical Catholic University of Rio Grande do Sul – PUCRS, 6681

Ipiranga Avenue, 90610-900, Porto Alegre, Rio Grande do Sul, Brazil

*rubiayoungsun@gmail.com

Abstract

Forsterite is a magnesium silicon oxide mineral with an olivine structure and a diverse spectrum of applications, ranging from biomedical to optical devices. Controlled purity and crystalline phases are key requirements for such applications, but the literature shows a limited understanding of the synthetic routes that would enable such control, in particular at the nanoscale. In this work, single-phase forsterite nanopowder with a crystallite size of 15.3 nm was synthesized by reverse strike co-precipitation. A reaction mechanism for the synthesis was proposed based on DSC/TGA analysis and intermediate products. Forsterite pellets using the nanopowder were produced by low-cost cold-pressing and showed high transparency and densities above 93%. The nanosized crystals allowed for lower sintering temperatures and enhanced hardness.

Download English Version:

https://daneshyari.com/en/article/5437251

Download Persian Version:

https://daneshyari.com/article/5437251

<u>Daneshyari.com</u>