
Author's Accepted Manuscript

Preparation and Characterization of Si₃N₄-based Composite Ceramic Tool Materials by Microwave Sintering

Weiwei Xu, Zengbin Yin, Juntang Yuan, Zhenhua Wang, Yue Liu

www.elsevier.com/locate/ceri

PII: S0272-8842(17)31908-9

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.08.209

Reference: CERI16163

To appear in: Ceramics International

Received date: 30 July 2017 Revised date: 26 August 2017 Accepted date: 30 August 2017

Cite this article as: Weiwei Xu, Zengbin Yin, Juntang Yuan, Zhenhua Wang and Yue Liu, Preparation and Characterization of Si₃N₄-based Composite Ceramic Tool Materials by Microwave Sintering, *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2017.08.209

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation and Characterization of Si₃N₄-based Composite Ceramic

Tool Materials by Microwave Sintering

Weiwei Xu^{1, 3}, Zengbin Yin^{11, 3}, Juntang Yuan^{1, 3}, Zhenhua Wang^{1, 3}, Yue Liu²

¹School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China

²Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education

³Collaborative Innovation Center of High-End Equipment Manufacturing Technology (Nanjing University of Science and Technology), Ministry of Industry and Information Technology, PR China

Abstract: Si₃N₄-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si₃N₄-based ceramics were investigated. The frictional characteristics of the microwave sintered Si₃N₄-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si₃N₄ ceramics, while it enhanced the aspect-ratio of β-Si₃N₄ which promoted the mechanical properties. The Si₃N₄-based composite ceramics reinforced by 15wt.% (W,Ti)C sintered at 1600°C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 \pm 0.21%, 15.92 \pm 0.09GPa and 7.01 \pm 0.14MPa.m^{1/2}, respectively. Compared to the monolithic Si₃N₄ ceramics by microwave sintering, the sintering temperature decreased 100°C, the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si₃N₄/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15wt.%.

Key words: Si₃N₄/(W,Ti)C ceramics; microwave sintering; mechanical properties; microstructure; frictional characteristics

1 Introduction

Silicon nitride ceramic attract more attention at present for its excellent mechanical properties [1], good wear resistance [2] and thermal shock resistance [3]. For the excellent properties of Si_3N_4 ceramics at both room and high temperatures, they have been widely used as structural applications, such as heat insulators, gas turbines and cutting tools, etc.

However, the applications of silicon nitride ceramic materials are not as widespread as they might be due to their relatively low hardness and poor fracture toughness. For improving mechanical properties of Si_3N_4 ceramics, much effort has been made in the fabrication of silicon nitride ceramics by conventional sintering

^{*}Corresponding author.Tel.: +86 25 84315421.Fax: +86 25 84315831.E-mail: zengbinyin@njust.edu.cn (Z.Yin).

Download English Version:

https://daneshyari.com/en/article/5437254

Download Persian Version:

https://daneshyari.com/article/5437254

Daneshyari.com