
Author's Accepted Manuscript

Room-Temperature UV-Ozone Assisted Solution Process for Zirconium Oxide Films with High Dielectric Properties

Xin Dong, Guodong Xia, Qian Zhang, Lubin Li, Hongyu Gong, Jianqiang Bi, Sumei Wang

www.elsevier.com/locate/ceri

PII: S0272-8842(17)31750-9

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.08.055

Reference: CERI16009

To appear in: Ceramics International

Received date: 10 July 2017 Revised date: 6 August 2017 Accepted date: 7 August 2017

Cite this article as: Xin Dong, Guodong Xia, Qian Zhang, Lubin Li, Hongy Gong, Jianqiang Bi and Sumei Wang, Room-Temperature UV-Ozone Assisted Solution Process for Zirconium Oxide Films with High Dielectric Properties *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2017.08.055

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Room-Temperature UV-Ozone Assisted Solution Process for

Zirconium Oxide Films with High Dielectric Properties

Xin Dong^a, Guodong Xia^{a,b,*}, Qian Zhang^a, Lubin Li^a, Hongyu Gong^a, Jianqiang Bi^a, Sumei

Wang^{a,*}

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of

Education), Shandong University, Jinan 250061, China.

E-mail: wangsumei3000@sdu.edu.cn

^bDepartment of Material Science and Engineering, Qilu University of Technology, Jinan 250353,

China.

E-mail: xia@qlu.edu.cn

Abstract

A facile, low-cost, and room-temperature UV-ozone (UVO) assisted solution process was

employed to prepare zirconium oxide (ZrO_x) films with high dielectric properties. ZrO_x films were

deposited by a simple spin-coating of zirconium acetylacetonate (ZrAcAc) precursor in the

environment-friendly solvent of ethanol. The smooth and amorphous ZrO_x films by UVO exhibit

average visible transmittances over 90% and energy bandgap of 5.7 eV. Low leakage current of

6.0×10⁻⁸ A/cm² at 3MV/cm and high dielectric constant of 13 (100 Hz) were achieved for ZrO_x

dielectrics at the nearly room temperature. Moreover, a fully room-temperature solution-processed

oxide thin films transistor (TFT) with UVO assisted ZrO_x dielectric films achieved acceptable

performances, such as a low operating voltage of 3 V, high carrier mobility of 1.65 cm²V⁻¹s⁻¹, and

on/off current ratio about $10^4 \sim 10^5$. Our work indicates that simple room-temperature UVO is

highly potential for low-temperature, solution-processed and high-performance oxide films and

devices.

Keywords: High-k dielectrics; Metal oxides; Sol–gel; Thin-film transistor; Low-temperature;

1

Download English Version:

https://daneshyari.com/en/article/5437416

Download Persian Version:

https://daneshyari.com/article/5437416

<u>Daneshyari.com</u>