ARTICLE IN PRESS

Ceramics International xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Formation of WB_2 /mullite composites by reduction-based combustion synthesis with Al and Si as reductants and excess B_2O_3 addition

C.L. Yeh*, C.H. Kang

Department of Aerospace and Systems Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan

ARTICLE INFO

Keywords: B. Composites D. Borides D. Mullite B₂O₃ Self-propagating high-temperature synthesis (SHS)

ABSTRACT

Fabrication of WB₂/mullite composites was conducted by combustion synthesis involving metallothermic reduction of WO₃ and B₂O₃ in the mode of self-propagating high-temperature synthesis (SHS). Effects of excess B₂O₃ and pre-added and in situ formed SiO₂ on formation of boride and mullite were investigated. Powder compacts with pre-added SiO₂ were composed of $xWO_3+yB_2O_3+6A1+2SiO_2$ with y/x=1.0-2.0. For the Si-containing samples, the starting mixtures comprised $mWO_3+rB_2O_3+6A1+2SiO_2$ with n/m=1.0-2.0. The Si-adopted samples are more exothermic than the SiO₂-added samples, and the reaction temperature and combustion wave velocity decreases with increasing molar proportion of B₂O₃/WO₃. The phase evolution was improved by adding excess B₂O₃ to compensate for its evaporation loss during the SHS process. As a result, the intermediates WB and WSi₂ were significantly reduced in the final WB₂/mullite composite of the SiO₂-added sample with excess B₂O₃ of y/x=2.0. With the advantage of using Al and Si as reductants, the Si-based reaction of n/m=1.75 produced a WB₂/mullite composite with negligible WB and WSi₂.

1. Introduction

Mullite is a stable solid solution phase in the Al₂O₃–SiO₂ system. Mullite ($3Al_2O_3 \cdot 2SiO_2$) not only is a promising high-temperature structural material but also is a candidate for use in the electronic packing and optical applications, due to its unique properties including high melting point, high creep resistance, excellent thermal stability, good chemical resistance, good thermal shock resistance, low thermal expansion coefficient, low dielectric constant, and transmittance to infrared [1–3]. Additionally, mullite-based composites with ZrO₂ and Al₂O₃ as reinforcements possess improved fracture toughness, flexural strength, corrosion resistance, and thermal shock resistance, and therefore, have been broadly studied [4–8]. Considerable attention has recently been paid to mullite combined with other ceramic and intermetallic additives, such as TiC, SiC, TiB₂, TaB₂, BN, Al₂TiO₅, and MoSi₂ [9–15].

A variety of processing methods with different starting materials have been employed to prepare mullite in a monolithic or composite form. Fabrication techniques comprise reaction sintering [4,16], spark plasma sintering (SPS) [5,9], self-propagating high-temperature synthesis (SHS) [11,12], thermal explosion [15], sol-gel method [17,18], gel casting [19,20], and solution combustion synthesis [21,22]. Combustion synthesis of the SHS mode takes advantage of highly exothermic reactions, and hence, is an energy-efficient and time-saving production route [23–25]. The SHS method has other merits like high productivity, simplicity, high-purity products, and a diversity of final products. A large number of transition metal (mostly the groups IVb and Vb) borides have been produced by the SHS process from the elemental powder compacts of their corresponding stoichiometries [25–28]. However, direct combustion between the group-VIb transition metals (Cr, Mo, and W) and boron is not feasible. An alternative approach of preparing Cr-B, Mo-B, and W-B compounds is based upon metallothermic reduction of respective metal oxides, Cr₂O₃, MoO₃, and WO₃ [25]. By incorporating borothermic reduction of WO₃ into the W-B combustion system, tungsten borides of different phases were produced in the SHS manner [29]. Yazici and Derin [30] performed the SHS reaction involving magnesiothermic reduction of WO3 and B2O3 to fabricate WB and W2B5. In addition, Nasiri-Tabrizi et al. [31] obtained WB-W2B5-MgO composites from the WO3/B2O3/ Mg mixture through mechanochemically induced self-sustaining reaction.

When Al is used as the reductant, aluminothermic reduction of WO_3 not only is highly energetic but produces Al_2O_3 . Generation of a large amount of heat is a great benefit for combustion synthesis and Al_2O_3 is one of two constituents of mullite. Therefore, this study aims to fabricate WB_2 /mullite composites by reduction-based combustion synthesis involving aluminothermic reduction of WO_3 and B_2O_3 . With regard to the source of boron, the use of B_2O_3 instead of elemental

* Corresponding author.

E-mail address: clyeh@fcu.edu.tw (C.L. Yeh).

http://dx.doi.org/10.1016/j.ceramint.2017.05.008

Received 7 April 2017; Received in revised form 26 April 2017; Accepted 2 May 2017 0272-8842/ \odot 2017 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Table 1

Molar contents of WO ₃ and B ₂ O ₃ in Reactions (1) and ((2).
--	------

Molar Ratio of B_2O_3/WO_3 (<i>y</i> / <i>x</i> and <i>n</i> / <i>m</i>)	Reaction (1)		Reaction (2)	
	x	y	т	п
1.0	3/2	3/2	13/6	13/6
1.25	4/3	5/3	52/27	65/27
1.5	6/5	9/5	26/15	39/15
1.75	12/11	21/11	52/33	91/33
2.0	1	2	13/9	26/9

boron is cost-effective. Besides Al, this study employs Si as the second reducing agent in order to compare the effects of in situ formed SiO₂ with pre-added SiO₂ on mullite formation and combustion behavior. Because of high volatility of B₂O₃ at elevated temperatures and possible outflowing of gaseous boron oxides (e.g., BO and B₂O₂) generated from reduction of B₂O₃, excess B₂O₃ is a subject of importance to compensate for the loss of boron. According to Guo and Zhang [32,33], B₂O₃ has a high vapor pressure reaching up to 344 Pa at 1527 °C, which leading to its rapid vaporization. Ran et al. [34] also indicated that at above 1200 °C, B₂O_{2(g)} and BO_(g) started to form from a reaction between B₂O₃ and B or by the gas-phase decomposition of B₂O_{3(g)}. Therefore, this study adopts excess B₂O₃ in the reactant mixture and investigates its influence on evolution of WB₂ and combustion characteristics.

2. Experimental methods of approach

The starting materials of this study include WO₃ (Alfa Aesar, 99.8%), B_2O_3 (Strem Chemicals, 99.9%), Al (Showa Chemical Co., <

Fig. 2. Effects of molar ratio of B_2O_3/WO_3 on flame-front velocity of SiO₂- and Si-based reaction systems.

45 µm, 99.9%), SiO₂ (Strem Chemicals, 99%), and Si (Strem Chemicals, <45 µm, 99%). Two reaction systems with different mullite formation mechanisms were conducted. Reaction (1) adopts Al as the reducing agent for WO₃ and B₂O₃ and is formulated with pre-added SiO₂. Formation of mullite from pre-added SiO₂ and redox-produced Al₂O₃ was studied in Reaction (1).

$$xWO_3 + yB_2O_3 + 6Al + 2SiO_2 \rightarrow \frac{3}{2}WB_2 + (3Al_2O_3 \cdot 2SiO_2)$$
 (1)

where the stoichiometric coefficients, x and y, represent the mole

Fig. 1. Time sequences of recorded images illustrating self-sustaining combustion wave propagating along samples of (a) Reaction (1) with y/x=1.25 and (b) Reaction (2) with n/m=2.0.

Download English Version:

https://daneshyari.com/en/article/5437656

Download Persian Version:

https://daneshyari.com/article/5437656

Daneshyari.com