
Author's Accepted Manuscript

Spark Plasma Sintering and Characterization of ZrC-TiB₂ Composites

Ozden Ormanci Ozturk, Gultekin Goller

www.elsevier.com/locate/ceri

PII: S0272-8842(17)30567-9

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.03.199

Reference: CERI14968

To appear in: Ceramics International

Received date: 29 January 2017 Revised date: 28 March 2017 Accepted date: 29 March 2017

Cite this article as: Ozden Ormanci Ozturk and Gultekin Goller, Spark Plasm Sintering and Characterization of ZrC-TiB₂ Composites, *Ceramics International* http://dx.doi.org/10.1016/j.ceramint.2017.03.199

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Spark Plasma Sintering and Characterization of ZrC-TiB₂ Composites

Ozden Ormanci Ozturk¹, Gultekin Goller^{1*}

¹Istanbul Technical University, Metallurgical and Materials Engineering Department,

34469, Maslak, Istanbul, Turkey

*Corresponding Author: Gultekin Goller. Istanbul Technical University, Department of

Metallurgical and Materials Engineering, 34469, Istanbul, Turkey. Tel.: +90 212

2856891; Fax: +90 212 2853427. e-mail address: goller@itu.edu.tr

Abstract

ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark

Plasma Sintering (SPS) technique at 1685°C and 1700°C for 300 s under 40-50-60

MPa. Densification, crystalline phases, microstructure, mechanical properties and

oxidation behavior of the composites were investigated. The sintered bodies were

composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of

the composites were improved by increasing the TiB₂ content and applied pressure. The

highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol.% TiB₂.

Oxidation tests were performed at 900°C for 2 h and the formation of ZrO₂, TiO₂ and

 B_2O_3 phases were identified by using XRD.

Keywords: Zirconium carbide, titanium diboride, spark plasma sintering

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/5437777

Download Persian Version:

https://daneshyari.com/article/5437777

Daneshyari.com