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In this work, the multiphase coexistence of rhombohedral-orthorhombic and orthorhombic-tetragonal (R-O/O-
T) was constructed in (1-x-y)BaTiO3-xCaTiO3-yBaZrO; ceramics with 0.14 < x < 0.16 and 0.10 < y < 0.12, and
thus a large piezoelectric constant (dsz) of 600 pC/N was attained in the ternary (1-x-y)BaTiO3-xCaTiOs-
yBaZrO; ceramics using the optimization of x and y. The R-O/O-T multiphase coexistence as well as the
enhancement of dielectric and ferroelectric properties can be responsible for the high ds3 of this work. In

addition, a high strain of 0.15% was observed in the multiphase coexistence. As a result, electrical properties of
BaTiO3 can be optimized by the construction of multiphase coexistence through the co-doping of CaTiO3 and

BaZrOs.

1. Introduction

Piezoelectric ceramics were widely used for some electronic devices,
such as buzzers, actuators, piezoelectric energy harvesting, etc [1,2].
Since then, Pb(Zr,Ti)O3 (PZT) piezoelectric ceramics have exhibited the
outstanding performance and dominated the piezoelectric markets
[1-4]. However, the involved toxic lead is damaging our environment
during their fabrication and waste disposal process. Until now, several
kinds of lead-free piezoceramics have been extensively studied to
replace PZT, including potassium sodium niobate (K,Na)NbO;
(KNN), bismuth sodium titanate (Bi,Na)TiO; (BNT), and barium
titanate BaTiO3 (BT) [3,5-9]. However, their electrical properties are
still far from satisfactory, which were unable to fully take the place of
PZT [3,5-9]. Therefore, it's an urgent task to develop the lead-free
piezoceramics with high performance.

Recently, BaTiO3 ceramics have been extensively studied due to the
construction of phase boundaries [10,11]. As we known, there are three
kinds of phase transitions in a pure BaTiO3, including rhombohedral-
orthorhombic (R-O) phase transition, orthorhombic-tetragonal (O-T)
phase transition, and tetragonal-cubic (T-C) phase transition.
Therefore, it is highly expected to construct the phase boundaries of
BaTiO3 ceramics by modifying their phase transition temperatures (Tx-
o and To.r) using chemical components, finally resulting in the
enhancement of piezoelectric properties [12,13]. Some breakthroughs
have taken placed in the lead-free 0.5(BaZrTipg03)—
0.5(Bag ,Cag 3TiO3) [BZg 2T-xBCp 3T] ceramics [10], possessing a high
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piezoelectric coefficient of 620 pC/N. It was thought that the extra-
ordinary piezoelectricity stems from a tricritical triple point where R, T
and C phases meet [10]. In addition, further studies on BZq >T-xBC 3T
system have affirmatively confirmed the relationship between en-
hanced electrical properties and multiphase boundaries [14-22].

Among these doping components, CaTiO3 or BaZrO3 was often used
to modify the BaTiOs, and some new phase boundaries can be formed
[17,23,24]. According to the previous references and our experiments,
we chose CaTiO3 or BaZrO3 to modify the BaTiOs, that is, (1-z)BaTiO3-
zCaTiO3 and (1-w)BaTiO3-wBaZrOs. One can observe from Fig. 1(a)
that the addition of CaTiO3 can shift both To_t and Tk.o to the lower
temperature [25], resulting in the formation of tetragonal phase at
room temperature. In addition, both To_t and Tk.o moved forward to a
higher temperature by introducing BaZrOs; [26], resulting in the
construction of O-T phase boundary. However, O-T and T phases in
(1-2z)BaTiO3-zCaTiO3 and (1-w)BaTiOs-wBaZrO5 can't achieve a satis-
fied ds3 value, that is, a low ds3 of <250 pC/N can be observed
[Fig. 1(c) and (d)]. To realize high piezoelectric constant, the ternary
material system of (1-x-y)BaTiO3-xCaTiO3-yBaZrOs; [BT-xCT-yBZ, x
= 0-0.25 (y = 0.10), y = 0—0.20 (x = 0.16)] was designed, and then
effects of CaTiO3 and BaZrO3 contents on phase structure and electrical
properties of BaTiO; ceramics were investigated. By optimizing the
compositions, multiphase coexistence (R-O/O-T) can be realized, and
then the enhancement of electrical properties can be attained. In
addition, the mechanism researches of large piezoelectric constant near
the multiphase coexistence were also discussed.
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Fig. 1. Phase diagrams of (a) (1-x)BaTiO3-zCaTiO3 and (b) (1-w)BaTiOz-wBaZrOs ceramics. (¢) and (d) are their corresponding dss and k;, values.
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Fig. 2. XRD patterns of (1-x-y)BaTiO3-xCaTiO3-yBaZrO3 ceramics with (a) x (y = 0.10)
and (c) y (x = 0.16). (b) and (d) are their corresponding XRD patterns at 20 = 44-46°.

2. Experimental procedure

Lead-free (1-x-y)BaTiO3-xCaTiO5-yBaZrO3 [x = 0—0.25 (y = 0.10),
y = 0—0.20 (x = 0.16)] ceramics were synthesized by the conventional
solid-state sintering method. Barium carbonate (BaCO3, 99%), calcium
carbonate (CaCOs3, 99%), titanium dioxide (TiO», 98%), and barium
zirconate (BaZrOs;, 99%) were used as raw materials. All the raw
materials were weighted and ball milled for 24 h with alcohol. After
that, the mixing slurries were dried and calcined at 1260 °C for 3 h and
were mixed with a binder of 8 wt% polyvinyl alcohol (PVA). The
calcined powders were pressed into the disks with a diameter of 10 mm
and a thickness of 1 mm under a pressure of 10 MPa. After PVA was
burned off, the pellets were sintered at 1450 °C for 3 h in air. The
sintered samples were pasted with silver and then fired at 600 °C for
10 min. At last, the direct current electric field of 2 kV/mm was applied
to pole each sample in a silicon oil bath for 30 min.

The phase structure of the as-sintered ceramics was analyzed by X-
ray diffraction with a CuK, radiation (A = 1.5406 A) (XRD, Bruker D8
Advanced XRD, Bruker AXS, Inc., Madison, WI). Field emission
scanning electron microscopy (FE-SEM) (JSM-7500, Japan) was used
to investigate surface morphologies of the sintered samples. Raman
spectroscopic studies were carried out by a Horiba Aramis spectro-
meter (Horiba Scientific) with excitation sources of 473 nm. The
spectra were recorded in the temperature range from -150 to 140 °C
using a connected temperature controller. The temperature depen-
dence of dielectric properties was examined using an LCR meter
(TH2816A, China) at 10 kHz under the temperature range of —150 to
150 °C. The relative permittivity and dielectric loss of the samples were
measured using an LCR meter (HP 4980, Agilent, U.S.A) in the poled
state. Ferroelectric properties (polarization-electric field loops) were
measured using a Radiant Precise Workstation (Radiant Technologies,
Medina NY) with a frequency of 10 Hz. Measurement of longitudinal
piezoelectric coefficient (ds3) was characterized using a piezoelectric
coefficient ds3 testing meter (ZJ-3A, China), and the planar electro-
mechanical coupling coefficient k, was measured using an impedance
analyzer (HP 4299A). The strain-electric field (S—E) curves were
measured by a strain analyzer (aixACCF TF Analyzer 1000, Germany).
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