
Author's Accepted Manuscript

Enhanced electromechanical properties of CaZrO₃-modified (K_{0.5}Na_{0.5})NbO₃-based lead-free ceramics

Zhe Kong, Wangfeng Bai, Peng Zheng, Jingji Zhang, Fei wen, Daqin Chen, Bo Shen, Jiwei Zhai

www.elsevier.com/locate/ceri

PII: S0272-8842(17)30374-7

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.03.014

Reference: CERI14783

To appear in: Ceramics International

Received date: 20 January 2017 Revised date: 2 March 2017 Accepted date: 2 March 2017

Cite this article as: Zhe Kong, Wangfeng Bai, Peng Zheng, Jingji Zhang, Fe wen, Daqin Chen, Bo Shen and Jiwei Zhai, Enhanced electromechanica properties of CaZrO₃-modified (K_{0.5}Na_{0.5})NbO₃-based lead-free ceramics *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2017.03.014

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Enhanced electromechanical properties of CaZrO₃-modified

(K_{0.5}Na_{0.5})NbO₃-based lead-free ceramics

Zhe Kong¹, Wangfeng Bai^{1*}, Peng Zheng¹, Jingji Zhang²,Fei wen¹, Daqin Chen^{1*}, Bo Shen³, Jiwei Zhai³

¹College of Materials and Environmental Engineering, Hangzhou Dianzi University,

Hangzhou, 310018, China

²College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China

³Functional Materials Research Laboratory, School of Materials Science &

Engineering, Tongji University, No. 4800 Caoan Highway, Shanghai 201804, China bwfcxj@126.com

dqchen@hdu.edu.cn.

*Corresponding author.

Abstract

Pairing of large strain response and high d_{33} with high (K_{0.5}Na_{0.5})NbO₃-based materials is of high significance in practical applications for report remarkable enhancement in the piezoelectric actuators. Here, we properties $(1-x)(K_{0.52}Na_{0.48})$ $(Nb_{0.95}Sb_{0.05})O_3-xCaZrO_3$ electromechanical for (KNNS-xCZ) lead-free ceramics through the construction of a rhombohedral (R)-tetragonal (T) phase boundary. We investigated the correlation between the composition-driven phase boundary and resulting ferroelectric, piezoelectric, and strain properties in KNNS-xCZ ceramics. The KNNS-xCZ ceramics with x=0.02 exhibited a large strain response of 0.23% while keeping a relatively large d_{33} of 237pC/N, which was mainly ascribed to the coexistence of R and T phases confirmed by the XRD and dielectric results. It was found that pairing of large strain response and high d_{33} in KNN-based materials was achieved. As a consequence, we believe that this study opens the possibility to achieve high-performance lead-free electromechanical compounds for piezoelectric actuators applications.

Keywords: Potassium-sodium niobate; Electromechanical properties; Multiphase coexistence; Lead-free ceramics; Strain response.

Download English Version:

https://daneshyari.com/en/article/5437976

Download Persian Version:

https://daneshyari.com/article/5437976

<u>Daneshyari.com</u>