
Author's Accepted Manuscript

Preparation and characterization of mesoporous bioactive glass from agricultural waste rice husk for targeted anticancer drug delivery

Shiow-Yi Chen, Po-Fong Chou, Wai-Kong Chan, Hsiu-Mei Lin

www.elsevier.com/locate/ceri

PII: S0272-8842(16)32001-6

DOI: http://dx.doi.org/10.1016/j.ceramint.2016.11.007

Reference: CERI14090

To appear in: Ceramics International

Received date: 11 August 2016 Revised date: 14 October 2016 Accepted date: 1 November 2016

Cite this article as: Shiow-Yi Chen, Po-Fong Chou, Wai-Kong Chan and Hsiu Mei Lin, Preparation and characterization of mesoporous bioactive glass fror agricultural waste rice husk for targeted anticancer drug delivery, *Ceramic International*, http://dx.doi.org/10.1016/j.ceramint.2016.11.007

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

CCEPTED MANUS

Preparation and characterization of mesoporous bioactive glass from

agricultural waste rice husk for targeted anticancer drug delivery

Shiow-Yi Chen^{a,b}, Po-Fong Chou^a, Wai-Kong Chan^a, and Hsiu-Mei Lin *a,b

^aDepartment of Bioscience and Biotechnology, National Taiwan Ocean University, 2

Pei-Ning Road, Keelung 20224, Taiwan

^bCenter of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning

Road, Keelung 20224, Taiwan

Hsiu-Mei Lin

E-mail: hmlin@mail.ntou.edu.tw

Tel.: +886-2-24622192 ext. 5562; Fax: +886-2-24622320

Abstract

Mesoporous bioactive glass (MBG) possesses excellent biocompatibility and an

important material used for bone regeneration and drug delivery. The aim of this study

is to synthesize MBG from low-cost agricultural waste rice husk (rMBG) using a sol-gel

process. We show that rMBG has typical characteristics of the well-ordered hexagonal

mesostructure of MBG and can be grafted with folic acid (FA) and then loaded with

anticancer drugs for targeting cancer cells. By loading rMBG-FA with camptothecin

(CPT, a water-insoluble anticancer drug) we formed rMBG-FA/CPT, which killed

cancer cells by being selectively and efficiently taken in via the cells' FA receptors

(FRs). We found that rMBG-FA/CPT showed a higher cytotoxicity to FR-

1

Download English Version:

https://daneshyari.com/en/article/5438288

Download Persian Version:

https://daneshyari.com/article/5438288

<u>Daneshyari.com</u>