
Author's Accepted Manuscript

Controllable synthesis and magnetic properties of hydrothermally synthesised NiCo₂O₄ nano-spheres

Xiaoyu Yang, Xiaojia Yu, Qun Yang, Dalei Zhao, Kang Zhang, Jixin Yao, Guang Li, Haidong Zhou, Xueqin Zuo

ww.elsevier.com/locate/ceri

PII: S0272-8842(17)30493-5

http://dx.doi.org/10.1016/j.ceramint.2017.03.121 DOI:

Reference: **CERI14890**

To appear in: Ceramics International

Received date: 9 March 2017 Revised date: 20 March 2017 Accepted date: 20 March 2017

Cite this article as: Xiaoyu Yang, Xiaojia Yu, Qun Yang, Dalei Zhao, Kang Zhang, Jixin Yao, Guang Li, Haidong Zhou and Xueqin Zuo, Controllable synthesis and magnetic properties of hydrothermally synthesised NiCo₂O₄ nano h r e S , Ceramics International http://dx.doi.org/10.1016/j.ceramint.2017.03.121

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Controllable properties synthesis magnetic of

hydrothermally synthesised NiCo₂O₄ nano-spheres

Xiaoyu Yang¹, Xiaojia Yu¹, Qun Yang¹, Dalei Zhao¹, Kang Zhang¹, Jixin

Yao¹, Guang Li^{1, 2, *}, Haidong Zhou^{3,4}, Xueqin Zuo¹

¹School of Physics and Materials Science, Anhui University, Hefei 230601, China

²Anhui Key Laboratory of Information Materials and Devices, Hefei 230601, China

³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200,

USA

⁴National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

Abstract

In the work, we explored an efficient synthetic platform to purposefully fabricate different

morphologies of NiCo₂O₄ by controlling the hydrothermal temperature. All the obtained samples were

characterized by means of X-ray diffraction, scanning electron microscopy, high resolution

transmission electron microscopy. With the increase of hydrothermal temperature, the morphology of

obtained samples transformed from spongy nanosphere to ellipse-like, then to peanut-like structure and

an effective blue shifting of Raman spectroscopy occurred. The magnetic measurements indicated that

the materials transform from paramagnetic to weak ferromagnetic with the increase of hydrothermal

temperature.

Keyword: A. Powders: chemical preparation; NiCo₂O₄; Nanostructure; C. Magnetic

properties

1. Introductions

In the past decades, nanopowders and nanostructured materials have aroused

*Corresponding author. Tel: (+86) 0551 63861867, Fax: (+86) 0551 63861992

e-mail address: liguang1971@ahu.edu.cn (G. Li), liguang64@163.com

1

Download English Version:

https://daneshyari.com/en/article/5438313

Download Persian Version:

https://daneshyari.com/article/5438313

<u>Daneshyari.com</u>