Author's Accepted Manuscript

Performance of Lightweight Coated Oxide Ceramic Composites for Industrial High Speed Wood Cutting Tools: A Step Closer to Market

Gurdial Blugan, Claudia Strehler, Marc Vetterli, Bruno Ehrle, Roland Duttlinger, Peter Blösch, Jakob Kuebler

 PII:
 S0272-8842(17)30600-4

 DOI:
 http://dx.doi.org/10.1016/j.ceramint.2017.04.005

 Reference:
 CERI14983

To appear in: Ceramics International

Received date: 1 November 2016 Revised date: 20 March 2017 Accepted date: 2 April 2017

Cite this article as: Gurdial Blugan, Claudia Strehler, Marc Vetterli, Bruno Ehrle Roland Duttlinger, Peter Blösch and Jakob Kuebler, Performance of Lightweigh Coated Oxide Ceramic Composites for Industrial High Speed Wood Cutting Tools: A Step Closer to Market, *Ceramics International* http://dx.doi.org/10.1016/j.ceramint.2017.04.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Performance of Lightweight Coated Oxide Ceramic Composites for Industrial High Speed Wood Cutting Tools: A Step Closer to Market

Gurdial Blugan^{a*}, Claudia Strehler^{a1}, Marc Vetterli^b, , Bruno Ehrle^c, Roland Duttlinger^d, Peter Blösch^d, Jakob . Kuebler^a

^aEmpa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
 ^bInspire AG, icams, Lerchenfeldstrasse 5, 9014 St.Gallen, Switzerland
 ^cOERTLI Werkzeuge AG, Hoftstrasse 1, 8181 Höri bei Bülach, Switzerland
 ^dBlösch AG, Moosstrasse 68-78, 2540 Grenchen, Switzlerand

JSCR

*Corresponding author:gurdial.blugan@empa.ch

Abstract

The introduction of lightweight cutting tips in industrial wood machining could lead to machining at much higher speeds and thus greatly increase efficiency. One possible way to achieve this is through lightweight ceramic composites. An Al₂O₃ ceramic matrix was selected and reinforced with particles resulting in a density of approximately one quarter of the currently used heavy tungsten carbide tools (density of > 15 g/cm³). Furthermore, a coating was applied to the ceramic cutting tools in order to increase the stability of the cutting edge. A combination of reduced coefficient of friction, frictional forces and a resulting decrease in temperature can lead to a reduction in chipping at the cutting tip. Chipping has always been the major drawback of ceramic cutting tools for industrial wood cutting. A ceramic composite containing 25 vol.% of submicron and nano sized SiC particles shows good mechanical properties with $HV_2 = 21.5$ GPa and $K_{Ic} = 4.5$ MPa m^{1/2}. This composition performed very well in industrial cutting trials on laminated beech. The cutting performance was increased further by use of an industrially available coating on the tools. The quality of the cut wood surface has always been difficult to characterize when comparing cutting tool materials and is often performed qualitatively by experienced carpenters by touch. The surface quality of the machined laminated beech was for the first time quantitatively characterized using Gelsight 2.5D tactile sensing.

¹ Current address: Metoxit AG, 8240 Thayngen, Switzerland

Download English Version:

https://daneshyari.com/en/article/5438333

Download Persian Version:

https://daneshyari.com/article/5438333

Daneshyari.com