
Author's Accepted Manuscript

Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe₃O₄ powders

H. Fathi, S.M. Masoudpanah, S. Alamolhoda, H. Parnianfar

www.elsevier.com/locate/ceri

PII: S0272-8842(17)30376-0

DOI: http://dx.doi.org/10.1016/j.ceramint.2017.03.017

Reference: CERI14786

To appear in: Ceramics International

Received date: 12 February 2017 Revised date: 1 March 2017 Accepted date: 2 March 2017

Cite this article as: H. Fathi, S.M. Masoudpanah, S. Alamolhoda and H Parnianfar, Effect of fuel type on the microstructure and magnetic properties o solution combusted Fe₃O₄ powders, *Ceramics International* http://dx.doi.org/10.1016/j.ceramint.2017.03.017

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe₃O₄ powders

H. Fathi, S. M. Masoudpanah, S. Alamolhoda*, H. Parnianfar School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

*Corresponding author: Phone: +98 21 77240540, Fax:+98 21 77240480. e-mail: alamolhoda@iust.ac.ir

Abstract

Porous magnetite (Fe₃O₄) powders were synthesized by solution combustion method using the glycine and urea at different fuel to oxidant ratios (ϕ). The combustion behavior depended on the fuel type as characterized by thermal analysis. The structure and phase evolution investigated by X-ray diffraction method showed nearly single phase Fe₃O₄ powders which were achieved only by using the glycine fuel at ϕ =1. The specific surface area and porous structures of the ascombusted Fe₃O₄ powders were characterized by N₂ adsorption-desorption isotherms and scanning electron microscopy, respectively. The surface area using the glycine fuel (62.6 m²/g) was higher than that of urea fuel (42.5 m²/g), due to different combustion reactions. Magnetic properties of the as-combusted powders were studied by vibration sample magnetometry which exhibited the highest saturation magnetization of 74 emu/g using the glycine fuel at ϕ =1 on account of its high purity and large crystallite size.

Keywords: Fe₃O₄; Solution combustion synthesis; Fuel; Magnetic properties

1. Introduction

In recent years, mesoporous transition metal oxides have attracted much attention in electrochemistry, catalysis, solar cells, sensors, capacitors, etc., not only due to the large surface areas and uniform and tunable pore sizes, but also for their unusual electrical, magnetic and optical properties [1–3]. Mesoporous materials are usually synthesized using soft templates such as alkyl amine or hard templates like mesoporous silica and carbon which limit the applications of the methods, due to the multistep procedures of template dissolution after synthesis [4, 5].

Magnetite (Fe₃O₄), as a cubic iron oxide with inverse spinel structure, has been widely used in a variety of technological applications, such as magnetic recording media, catalyst, energy storage,

Download English Version:

https://daneshyari.com/en/article/5438520

Download Persian Version:

https://daneshyari.com/article/5438520

<u>Daneshyari.com</u>