
Author's Accepted Manuscript

Critical behavior near the paramagnetic ferromagnetic phase transition temperature in La_{0.6}Sr_{0.4}MnO₃ ceramic: A comparison between sol-gel and solid state process

T. Raoufi, M.H. Ehsani, D. Sanavi Khoshnoud

ww.elsevier.com/locate/ceri

PII: S0272-8842(17)30056-1

http://dx.doi.org/10.1016/j.ceramint.2017.01.045 DOI:

Reference: **CERI14507**

To appear in: Ceramics International

Received date: 29 October 2016 Revised date: 9 January 2017 Accepted date: 9 January 2017

Cite this article as: T. Raoufi, M.H. Ehsani and D. Sanavi Khoshnoud, Critica behavior near the paramagnetic to ferromagnetic phase transition temperature i La_{0.6}Sr_{0.4}MnO₃ ceramic: A comparison between sol-gel and solid state process Ceramics International, http://dx.doi.org/10.1016/j.ceramint.2017.01.045

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain CCEPTED MANUSCR

Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in

La_{0.6}Sr_{0.4}MnO₃ ceramic: A comparison between sol-gel and solid state process

T. Raoufi, M.H. Ehsani*, D. Sanavi Khoshnoud

Department of Physics, Semnan University, Semnan, 35195-363, Iran

Abstract

Critical behavior near the paramagnetic (PM) to ferromagnetic (FM) phase transition in

La_{0.6}Sr_{0.4}MnO₃ ceramics prepared by sol-gel and solid state reaction methods has been

systematically investigated. The XRD result coupled with the structural Rietveld refinement

method exhibited that all samples crystallized in a rhombohedral structure with a space group of

R-3C, which indicated the formation of the perovskite structure of La_{0.6}Sr_{0.4}MnO₃. The magnetic

data obtained from magnetization measurements indicated a second-order phase transition from

PM-FM phase around Curie temperature (T_c). Critical exponents, β , γ , and δ values are

estimated by various theoretical models such as the modified Arrott plot (MAP), the Kouvel-

Fisher plot (KF) and the critical isotherm (CI) techniques. Grain size dependence of the critical

behavior of La_{0.6}Sr_{0.4}MnO₃ samples with different sizes from nano-scale to mic-scale was

detected by fitting the experimental data to the theoretical models.

Keywords: Ceramic, Manganite, Size effect, Critical exponents.

1. Introduction

In the past decades, perovskite-type La_{1-x}Sr_xMnO₃ (LSMO) ceramics have been regarded as one

of the most attractive compounds because of their metallic nature, large bandwidth, and magnetic

phase transition around the room temperature (T_C = 300–370 K), in the range of x \approx 0.17 - 0.5

1

Download English Version:

https://daneshyari.com/en/article/5438659

Download Persian Version:

https://daneshyari.com/article/5438659

<u>Daneshyari.com</u>