
Author's Accepted Manuscript

Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties

M. Jazirehpour, S.A. Seyyed Ebrahimi

www.elsevier.com/locate/ceri

PII: S0272-8842(16)31132-4

DOI: http://dx.doi.org/10.1016/j.ceramint.2016.07.067

Reference: CERI13292

To appear in: Ceramics International

Received date: 11 June 2016 Accepted date: 11 July 2016

Cite this article as: M. Jazirehpour and S.A. Seyyed Ebrahimi, Synthesis o magnetite nanostructures with complex morphologies and effect of thes morphologies on magnetic and electromagnetic properties, *Ceramic International*, http://dx.doi.org/10.1016/j.ceramint.2016.07.067

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties

M. Jazirehpour¹, S. A. Seyyed Ebrahimi²

¹ Electroceramics Research Center, Department of Applied Sciences, Malek Ashtar University, P.O. Box 8581775631, Shahin shahr, Iran

² Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran 111554563, Iran

Abstract

Magnetite nanostructures with different morphologies (tube, urchin and dendrite) were synthesized via hydrothermal method and consequent reduction by hydrogen gas. Magnetization and electromagnetic (EM) properties were characterized. The results showed that the morphology of the nanostructures has a major role in the microwave magnetic and dielectric properties. The surface area and shape isotropy are the key factors for changes in EM properties of different morphologies. High surface area and anisotropic elongated shape of the dendritic nanostructures lead to their high microwave permittivity, whereas for urchin-like nanostructures

Download English Version:

https://daneshyari.com/en/article/5438694

Download Persian Version:

https://daneshyari.com/article/5438694

<u>Daneshyari.com</u>