
Author's Accepted Manuscript

A unique nanoporous graphene-ZnxCd_{1-x}S hybrid nanocomposite for enhanced photocatalytic degradation of water pollutants

Shiyun Lou, Wan Wang, Xianbin Jia, Yongqiang Wang, Shaomin Zhou

www.elsevier.com/locate/ceri

PII: S0272-8842(16)31241-X

DOI: http://dx.doi.org/10.1016/j.ceramint.2016.07.161

Reference: CERI13386

To appear in: Ceramics International

Received date: 19 April 2016 Revised date: 6 July 2016 Accepted date: 23 July 2016

Cite this article as: Shiyun Lou, Wan Wang, Xianbin Jia, Yongqiang Wang and Shaomin Zhou, A unique nanoporous graphene-ZnxCd_{1-x}S hybrinanocomposite for enhanced photocatalytic degradation of water pollutants *Ceramics International*, http://dx.doi.org/10.1016/j.ceramint.2016.07.161

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

A unique nanoporous graphene-Zn_xCd_{1-x}S hybrid nanocomposite for enhanced

photocatalytic degradation of water pollutants

Shiyun Lou, Wan Wang, Xianbin Jia, Yongqiang Wang, Shaomin Zhou*

Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng,

475004, PR China

*Corresponding Authors: smzhou@henu.edu.cn

Fax: +86-378-3881358; Tel: +86-378-3881358.

Abstract

In this work, a novel in-situ solvothermal reduction route has been made to immobilize of nanoporous

Zn_xCd_{1.x}S aggregates on graphene nanoribbons by using PVP as a stabilizer and thiourea as a sulphur

source. The nanoporous Zn_xCd_{1-x}S aggregates with diameters of 20-30 nm assembled from Zn_xCd_{1-x}S

nanocrystals (3-5 nm) are homogeneously anchored on graphene nanoribbons and the unique structure of

graphene-Zn_xCd_{1-x}S nanocomposites has contributed to large specific surface area (102.1 m²/g). Despite the

analogous size and configuration, the nanoporous graphene-Zn_xCd_{1-x}S hybrid nanocomposites exhibited

composition-dependent photocatalytic performances for the degradation of methyl orange (MO) under

visible light. In particular, graphene-Zn_{0.5}Cd_{0.5}S was capable of nearly completely degrading MO in 150

minutes. The excellent photocatalytic activity was proposed to arise from the synergy effect between

nanoporous Zn_xCd_{1-x}S aggregates and graphene, the suitable band gap, intimate interfacial contact, and

unique nanoporous structure. Moreover, the work provides a simple strategy to prepare various nanoporous

graphene-semiconductor nanocomposites.

Keywords: Nanoporous; Photocatalysis; Graphene; Zn_xCd_{1-x}S; Nanocomposite

1

Download English Version:

https://daneshyari.com/en/article/5438729

Download Persian Version:

https://daneshyari.com/article/5438729

<u>Daneshyari.com</u>