Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Origin of blue emission of phosphors prepared by a solid-state reaction of Eu^{3+} -doped LaCO₃OH with Al_2O_3 in a hydrogen atmosphere

Min-Ho Lee, Woo-Sik Jung*

School of Chemical Engineering, College of Engineering, Yeungnam University, 280 Daehak-ro, Gyongsan 38541, Republic of Korea

ARTICLE INFO

Eu2+-doped lanthanum hexaaluminate

Keywords:

Luminescence

Blue emission

Eu3+-doped LaCO3OH

Eu3+-doped LaAlO3

ABSTRACT

The phosphor powders prepared by calcining mixtures (1:1, 1:2, and 1:3 mol ratios) of Eu^{3+} -doped lanthanum(III) hydroxycarbonate (LaCO₃OH:Eu³⁺) and δ -alumina (δ -Al₂O₃) powders under a mixed gas flow of H₂ and N₂ exhibited orange (593 and 617 nm) and blue (441 nm) emission peaks, which were associated with Eu^{3+} -doped lanthanum aluminate (LaAlO₃:Eu³⁺) and Eu^{2+} -doped lanthanum hexaaluminate (LaAlO₃:Eu³⁺) and Eu^{2+} -doped lanthanum hexaaluminate (LaA_{0.827}Al_{11.9}O_{19.09}:Eu²⁺) phosphors, respectively. The relative amount of the latter phosphor increased with increasing reaction temperature and relative amount of δ -Al₂O₃ in the mixture. The conclusion that the blue emission is not associated with LaAlO₃:Eu²⁺ but La_{0.827}Al_{11.9}O_{19.09}:Eu²⁺ was supported by the following experimental results: the reduction of LaAlO₃:Eu³⁺ did not give a blue emission; Eu²⁺ ions occupied more than one site in the host; the line shape and position of the blue emission band were close to those of the single La_{0.827}Al_{11.9}O_{19.09}:Eu²⁺ phase. No formation of LaAlO₃:Eu²⁺ might be due to the increase in the ionic radius caused by the reduction of Eu³⁺ to Eu²⁺.

1. Introduction

Divalent europium ion (Eu²⁺)-doped materials have been widely studied because of their luminescent properties. The luminescence of the Eu²⁺ ion is associated with the Laporte allowed $4f^{6}5d^{1}\rightarrow 4f^{7}$ (5d \rightarrow 4f) transition and its color can be tuned by changing the host lattice. Much effort has been made to realize white light emission by adjusting the relative amount of Eu³⁺ to Eu²⁺ ions coexisting in a single host [1–7]. One method of preparing Eu³⁺ and Eu²⁺ co-doped materials is to calcine Eu³⁺-doped materials in a reducing atmosphere such as H₂ and CO, but Eu³⁺ ions doped in some hosts are not reduced to Eu²⁺ ions, because Eu²⁺ has a larger ionic size than Eu³⁺. To enable the reduction of Eu³⁺ to Eu²⁺ in such a host, the crystal-site engineering approach, in which the coordination environment and crystal site size are modified, has been applied [4,6,7]. For example, Huang et al. enlarged the activator site in Ca₁₂Al₁₄O₃₂ F₂:Eu³⁺ by replacing Al³⁺-F⁻ by Si⁴⁺-O²⁻, leading to the reduction of Eu³⁺ to Eu²⁺ [4].

Lanthanum aluminate (LaAlO₃) with a perovskite-type structure has attracted much attention as a host material because of its reasonably large band gap (> 5 eV) and high thermal stability (> 2100 °C). Many studies have focused on trivalent rare earth ion (Ce³⁺, Tb³⁺, Eu³⁺, Ho³⁺, or Yb³⁺)-doped LaAlO₃ owing to its great luminescent properties [8–12]. Mao et al. showed that the Eu³⁺ and Eu²⁺ co-doped phosphor powders prepared by a solid-state reaction among La₂O₃, Al₂O₃, and Eu₂O₃ powders in a mixed gas flow of H₂ and N₂ exhibited orange and blue (440 nm) emissions [1,2]. They assigned the blue emission to the 5d→4f transition of Eu²⁺ in LaAlO₃:Eu²⁺. Chen observed the intensity enhancement of the blue emission band at ca. 440 nm through the addition of SiO₂ to the three-component (La₂O₃, Al₂O₃, and Eu₂O₃) reaction system and explained the enhancement in terms of the charge compensation by the reduction of Eu³⁺ to Eu²⁺, which was accompanied by the substitution of Si⁴⁺ ion for Al³⁺ ion in LaAlO₃:Eu³⁺ [5]. Considering that the reduction of Eu³⁺ to Eu²⁺ in the LaAlO₃ host may not occur because the ionic radius of Eu²⁺ is larger (by ca. 7 pm) than that (136 pm) of La³⁺ for a coordination number (CN) of 12 [13,14], the blue emission is not likely to be associated with LaAlO₃:Eu²⁺. The origin of the blue emission at ca. 440 nm is therefore not clear yet.

In this study, we investigated the origin of the blue emission in phosphors obtained by calcining a mixture of $LaCO_3OH:Eu^{3+}$ and Al_2O_3 powders under a mixed gas flow of H_2 and N_2 . The two-component ($LaCO_3OH:Eu^{3+}$ and Al_2O_3) reaction system is preferable to the three-component (La_2O_3 , Al_2O_3 , and Eu_2O_3) one in terms of the intensity of the blue emission band [15].

2. Experimental procedure

The starting materials, La(NO₃)₃·6H₂O (99.9%), Eu(NO₃)₃·5H₂O

* Corresponding author.

E-mail address: wsjung@yu.ac.kr (W.-S. Jung).

http://dx.doi.org/10.1016/j.ceramint.2016.10.106

Received 21 September 2016; Received in revised form 12 October 2016; Accepted 17 October 2016 Available online 17 October 2016 0272-8842/ © 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved. (99.9%), La₂O₃ (99.99%), Eu₂O₃ (99.9%), KNO₃ (> 99.0%), and urea (99.0%) were purchased from Sigma-Aldrich Co. and used as-received without further purification. δ -Al₂O₃ (CR125, Baikalox International) was used as an Al source.

2.1. Synthesis of phosphors with blue emission from $LaCO_3OH:Eu^{3+}-Al_2O_3$ reaction system

Orthorhombic (*o*-)LaCO₃OH:Eu³⁺(2 mol%) powder was synthesized by refluxing an aqueous solution containing La(NO₃)₃·6H₂O, Eu(NO₃)₃·5H₂O, KNO₃, and urea, as described previously [16]. Mixtures (1:1, 1:2, and 1:3 mol ratios of Ln³⁺(=La³⁺ + Eu³⁺) to Al³⁺ ions; hereafter, 1:1, 1:2, and 1:3 mixtures, respectively) of *o*-LaCO₃OH:Eu³⁺ and δ -Al₂O₃ were thoroughly ground in an agate mortar and then transferred into an alumina crucible. The crucible was heated to the reaction temperature (1100–1400 °C) under a mixed gas flow of H₂ (10 vol%) and N₂ (hereafter, 10 vol% H₂/N₂). The gas flow rate was 100 mL/min and the duration was 3 h, unless stated otherwise.

2.2. Product characterization

The product powders were characterized by powder X-ray diffraction (XRD) with a PANalytical X'Pert PRO MPD X-ray diffractometer with Cu-K α radiation operating at 40 kV and 30 mA. The excitation and emission spectra were measured on a JASCO FP-6500 spectrofluorometer using a 150 W xenon lamp.

3. Results and discussion

The whv selected the reason we two-component (LaCO₃OH:Eu³⁺and Al₂O₃) reaction system instead of the threecomponent (La₂O₃, Al₂O₃, and Eu₂O₃) one is as follows. When these three components are not homogeneously mixed, the secondary EuAl₂O₄ phase is susceptible to be formed. For example, Fig. 1 shows the difference in the XRD patterns and emission spectra between the homogeneous and inhomogeneous mixtures, which were prepared by grinding the three components in an agate mortar. As shown in Fig. 1(A), the product powder derived from the homogeneous mixture was a mixture of hexagonal (h-)LaAlO₃ (ICDD-PDF #98-005-7330) and La_{0.827}Al_{11.9}O_{19.09} (lanthanum hexaaluminate, ICDD-PDF # 98-001-8287) and had a blue emission band at 441 nm together with two weak peaks at 593 and 617 nm. The latter peaks were assigned to the magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and electric dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu^{3+} ion, respectively [15]. On the other hand, the product powder obtained from the inhomogeneous mixture was a mixture of *h*-LaAlO₃, EuAl₂O₄, and unreacted hexagonal (h-)La₂O₃ (ICDD-PDF #98-001-0772) and α -Al₂O₃ (ICDD-PDF #01-088-0826). As shown in the inset in Fig. 1(B), the emission spectrum of the powder shows a green emission band at ca. 520 nm, which was associated with EuAl₂O₄ [17]. As a result, the formation of EuAl₂O₄ lowered the intensity of the blue emission band at 441 nm. The effect of the degree of homogeneity of the mixture on the product phase is much weaker for the twocomponent reaction system than for the three-component one. This is why we selected the two-component reaction system. The EuAl₂O₄ phase was not formed in this work.

Mixtures of o-LaCO₃OH:Eu³⁺(2 mol%) and δ -Al₂O₃ were calcined at 1200 °C and characterized by powder XRD and PL spectroscopy. As shown in Fig. 2(A, a), the XRD pattern of the sample obtained by calcining the 1:1 mixture exhibited peaks assigned to *h*-LaAlO₃ together with very weak peaks assigned to *h*-La₂O₃. No peaks corresponding to unreacted Al₂O₃ were observed because of their very low intensity [15]. For the samples obtained by calcining the 1:2 and 1:3 mixtures, however, weak peaks assigned to excess α -Al₂O₃ were detected (Fig. 2(A,b) and (A,c)). These three samples showed no distinct differences in their XRD patterns, except for the weak peaks

Fig. 1. XRD patterns of samples obtained by calcination of (A) homogeneous and (B) inhomogeneous mixtures of La₂O₃, Eu₂O₃, and δ -Al₂O₃ powders (mole ratio of La³⁺: Eu³⁺: Al³⁺= 0.95: 0.05: 2) at 1300 °C for 3 h under a flow of 10 vol% H₂/N₂. (\diamondsuit) La_{0.827}Al_{11.9}O_{19.09}, (\blacklozenge) α -Al₂O₃, (\circlearrowright) EuAl₂O₄, (\bigtriangleup) La₂O₃, (*) unidentified peak. The inset shows their emission spectra ($\lambda_{ex} = 298$ nm).

assigned to h-La₂O₃ and α -Al₂O₃; however, as shown in Fig. 2(B), their emission spectra were quite different. The emission spectrum (Fig. 2(B, a)) of the sample obtained from the 1:1 mixture corresponded to $LaAlO_3:Eu^{3+}$ [1,2,15,18]. As shown in the inset, the luminescence produced in response to irradiation from a 254 nm UV lamp appeared orange to the naked eve. On the other hand, for the samples obtained by calcining the 1:2 and 1:3 mixtures, a blue emission band at 441 nm, which was attributed to the 5d \rightarrow 4f transition of Eu²⁺ ion, was observed together with orange emission peaks. For the 1:3 mixture, as shown in Fig. 2(B, c), the blue emission band was more intense than the orange emission peaks. As shown in the insets, the luminescence at 254 nm UV lamp irradiation changed from orange to violet with increasing amount of δ -Al₂O₃ in the mixture. These results show that the intensity ratio of the blue to orange emission peaks can be controlled by changing the molar ratio in the mixture of $o-LaCO_3OH:Eu^{3+}$ and δ - Al_2O_3 .

The effect of the calcination temperature on the emission spectrum was also investigated for the 1:2 mixture. As shown in Fig. 3(a), the XRD pattern of the sample obtained at 1100 °C exhibited the peaks assigned to *h*-LaAlO₃ and *h*-La₂O₃. The XRD pattern (Fig. 3(b)) of the sample at 1200 °C is the same as that in Fig. 2(A,b). At temperatures \geq 1300 °C, peaks assigned to La_{0.827}Al_{11.9}O_{19.09} with a distorted magnetoplumbite-type structure [19] were detected together with those for *h*-LaAlO₃, and became more intense with increasing calcination temperature. For comparison, a single phase of La_{0.827}Al_{11.9}O_{19.09}:Eu²⁺ was obtained by calcining a mixture (1:14 in Download English Version:

https://daneshyari.com/en/article/5439219

Download Persian Version:

https://daneshyari.com/article/5439219

Daneshyari.com