Accepted Manuscript

Effects of Hydrophobic-Modified Cellulose Nanofibers (CNFs) on Cell Morphology and Mechanical Properties of High Void Fraction Polypropylene Nanocomposite Foams

Long Wang, Megumi Ando, Masaya Kubota, Shota Ishihara, Yuta Hikima, Masahiro Ohshima, Takafumi Sekiguchi, Akihiro Sato, Hiroyuki Yano

PII: S1359-835X(17)30131-8

DOI: http://dx.doi.org/10.1016/j.compositesa.2017.03.028

Reference: JCOMA 4618

To appear in: Composites: Part A

Received Date: 26 November 2016 Revised Date: 20 March 2017 Accepted Date: 25 March 2017

Please cite this article as: Wang, L., Ando, M., Kubota, M., Ishihara, S., Hikima, Y., Ohshima, M., Sekiguchi, T., Sato, A., Yano, H., Effects of Hydrophobic-Modified Cellulose Nanofibers (CNFs) on Cell Morphology and Mechanical Properties of High Void Fraction Polypropylene Nanocomposite Foams, *Composites: Part A* (2017), doi: http://dx.doi.org/10.1016/j.compositesa.2017.03.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of Hydrophobic-Modified Cellulose Nanofibers (CNFs) on Cell Morphology and Mechanical Properties of High Void Fraction Polypropylene Nanocomposite Foams

Long Wang^a, Megumi Ando^a, Masaya Kubota^a, Shota Ishihara^a, Yuta Hikima^a, Masahiro Ohshima^{a*}, Takafumi Sekiguchi^b, Akihiro Sato^b, and Hiroyuki Yano^c

^a Department of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan

^b New Business Development Division, SEIKO PMC Corp., Chiba 2670056, Japan

^c Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011,

Japan

Abstract: Nanocomposite foams based on isotactic polypropylene (iPP) and cellulose nanofibers (CNFs) with a void fraction as high as 80% were fabricated by a core-back foam injection molding (FIM). The hydrophobic CNFs were modified using alkenyl succinic anhydride. Different rheological curves such as the complex viscosity and $\tan \delta$ - ω curves were investigated to distinguish the effects of CNFs on PP's viscoelastic properties. Fast scanning chip calorimetry (FSC) results revealed that the added CNFs significantly increased the crystallization temperature and accelerated the crystallization process. Consequently, CNFs, especially with a concentration between 1 and 5 wt %, could clearly reduce PP's cell size and increase its cell density. The specific flexural modulus and bending strength were increased when the void fraction was lower than 80%. These

^{*} Correspondence to: Masahiro Ohshima; oshima@cheme.kyoto-u.ac.jp

Download English Version:

https://daneshyari.com/en/article/5439542

Download Persian Version:

https://daneshyari.com/article/5439542

<u>Daneshyari.com</u>