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a b s t r a c t

Finite Element (FE) simulations are conducted to predict the viscoelastic properties of uni-directional
(UD) fibre composites. The response of both periodic unit cells and random stochastic volume elements
(SVEs) is analysed; the fibres are assumed to behave as linear elastic isotropic solids while the matrix is
taken as a linear viscoelastic solid. Monte Carlo analyses are conducted to determine the probability dis-
tributions of all viscoelastic properties. Simulations are conducted on SVEs of increasing size in order to
determine the suitable size of a representative volume element (RVE). The predictions of the FE simula-
tions are compared to those of existing theories and it is found that the Mori-Tanaka (1973) and Lielens
(1999) models are the most effective in predicting the anisotropic viscoelastic response of the RVE.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fibre-reinforced polymers (FRPs) are widely used in industry
due to their excellent specific strength and stiffness and also dis-
play relatively high material damping compared to metals of sim-
ilar stiffness. Knowledge of their mechanical properties is essential
to achieve optimal designs with FRPs; while the anisotropic stiff-
ness and strength of FRPs have received great attention from the
research community, less studies exist on their damping proper-
ties, which are particularly important in aerospace applications.
The damping of FRPs is strongly anisotropic and depends on the
imposed frequency and temperature; experimental investigations
are therefore time-consuming and require specialist equipment.
For these reasons, effective numerical and theoretical predictions
of the damping properties need to be developed and validated.

Numerous theoretical models exist to predict the elastic
response of UD composites; these can be easily extended to the
case of viscoelastic materials via the elastic-viscoelastic correspon-
dence principle. In addition to the upper and lower bounds given
by the Voigt [3] and Reuss model [4], respectively, Hashin [5]
and Hill [6] derived narrower bounds for transversely isotropic
composites with isotropic constituents. Hashin and Rosen [7] later
derived a predictive model based on a Composite Cylinder Assem-
blage (CCA). Several predictive models are based on mean-field
homogenisation, in which the microfields within each constituent

of an inhomogeneous material are approximated by their phase
averages by using Eshelby’s model [8]. Examples include the Mori
and Tanaka [1] model, the Self-Consistent Method (Hill [9]) and
Lielens model [2]. Other theoretical models have focused on pre-
dictions of viscoelastic properties via extension of previously
developed elastic models, the most popular being such as Hashin
[10–12], Christensen [13] and Saravanos and Chamis [14].

Several studies attempted validation of the above analytical
models via numerical analysis; for example, Chandra et al. [15]
and Brinson et al. [16,17] considered the viscoelastic response of
square or hexagonal periodic unit cells; Tsai and Chi [18] pointed
out that the damping properties predicted by simulations on unit
cell are strongly dependent on the choice of unit cell. Such studies
were either limited to a few selected loading cases or they analysed
only damping properties but not the elastic response.

Since the spatial distribution of fibres in a UD composite is clo-
ser to being random than periodic, it is intuitive to expect that an
analysis of a random microstructure should yield more realistic
results than the analysis of a periodic unit cell. Several authors
have analysed numerically random microstructures; for example
Arnold et al. [19] analysed stiffness and strength of UD fibre com-
posites and compared the predictions of periodic unit cells and
random microstructures; Gusev et al. [20] analysed random distri-
butions of spherical particles in a continuous matrix to extract its
effective elastic properties. Several researchers have focused on
the dependence of numerical predictions upon the size of the
material volume investigated and gave guidelines for the choice
of an effective minimum size. For the case of composites with
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spherical filler particles, Drugan and Willis [21] found that the
elastic properties could be effectively predicted using Representa-
tive Volume Elements (RVEs) of size 4R, where R is the radius of the
spherical particle. Trias et al. [22] examined elasticity of UD car-
bon/epoxy composites and suggested an RVE size greater 50R.

In the present work, we present a comprehensive numerical
analysis of the anisotropic viscoelastic response of a UD fibre com-
posite lamina, simulating both periodic unit cells and random
microstructures. For the case of random microstructures we anal-
yse the size-dependence of the FE predictions and their scatter,
determining an effective RVE size. Predictions are also compared
to existing theoretical approaches with the objective of ranking
the effectiveness of different models in predicting the viscoelastic
properties.

The outline of the paper is as follows: in Section 2 we review the
constitutive models assumed for the composite and its con-
stituents; the FE simulations are described in detail in Section 3
and the corresponding numerical results are presented in Section 4.
In Section 5 we present and discuss a comparison of numerical and
theoretical predictions.

2. Review of viscoelastic constitutive models

2.1. Response of the constituent materials

Damping in FRPs is primarily due to the viscoelastic nature of
the polymeric matrix, since the most commonly used reinforcing
fibres are inorganic (e.g. carbon, glass) and their damping proper-
ties are negligible. Accordingly, in this work we shall assume a lin-
ear elastic response of the fibres.

In normal operating conditions composites experience small
deformations; this justifies modelling the polymeric matrix as a
linear viscoelastic material. Assuming an isotropic response
of the matrix, the constitutive equations of viscoelasticity are
given as

sijðtÞ ¼
Z t

�1
2Gðt � sÞdeij

ds
ds ð1Þ

piiðtÞ ¼
Z t

�1
3Kðt � sÞd/ii

ds
ds ð2Þ

where sij and pii are the components of the deviatoric and hydro-
static stress tensor, respectively, eij and /ij are the corresponding
deviatoric and dilatational strains, GðtÞ and KðtÞ are time dependent
shear and bulk moduli, respectively [16]. Taking a Fourier Trans-
form of Eqs. (1) and (2) gives

sijðixtÞ ¼ 2G�ðxÞeijðxÞ ð3Þ

piiðixtÞ ¼ 3K�ðxÞ/iiðxÞ: ð4Þ
The above equations are analogous to those governing isotropic

elasticity but are expressed in the Fourier domain; this correspon-
dence is referred to as the elastic-viscoelastic correspondence prin-
ciple. G�ðxÞ and K�ðxÞ are Fourier transforms of GðtÞ and KðtÞ and
can be decomposed in their real and imaginary parts

G�ðxÞ ¼ G0ðxÞ þ iG00ðxÞ ð5Þ

K�ðxÞ ¼ K 0ðxÞ þ iK 00ðxÞ ð6Þ
The real parts G0ðxÞ and K 0ðxÞ are defined as storage moduli,

while G00ðxÞ and K 00ðxÞ are the corresponding loss moduli. Loss fac-
tors are defined as ratios of the loss modulus to the corresponding
storage modulus, i.e.

gG ¼ G00=G0; gK ¼ K 00=K 0: ð7Þ

For typical polymers it is typically gK � gG; due to the fact that
dissipative mechanisms are more pronounced in presence of devi-
atoric strains. Existing predictive models of the effective elastic
properties of fibre composites can be extended to the case of vis-
coelastic composites by using the elastic-viscoelastic correspon-
dence principle.

The viscoelastic materials can be modelled using normalised
Prony series based on the generalised Maxwell model [23] as
follows:

GðtÞ
G0

¼ 1�
XN
i¼1

gi 1� eð�t=siÞ� � ð8Þ

KðtÞ
K0

¼ 1�
XN
i¼1

ki 1� eð�t=siÞ
� � ð9Þ

where G0 and K0 are instantaneous shear and bulk moduli, and gi, ki
and si are the normalised shear and bulk moduli and relaxation
time constant of the i-th arm of the generalised Maxwell model.

2.2. Response of a transversely isotropic lamina

For a transversely isotropic, uni-directional composite lamina,
viscoelasticity can be expressed, in terms of complex engineering
constants, as
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Five independent loss factors can also be defined for such trans-
versely isotropic material, as

g11 ¼ E00
11

E0
11

; g22 ¼ E00
22

E0
22

; g12 ¼ G00
12

G0
12

; g23 ¼ G00
23

G0
23

;

gm12 ¼
m0012
m012

ð11Þ

where a prime indicates storage properties and a double prime
refers to loss properties.

The engineering constants in Eqs. (10) and (11) have to be
determined experimentally or predicted numerically. Several ana-
lytical models exist to predict the values of such engineering con-
stants and loss factors. We shall compare our numerical
predictions to those of selected analytical models, namely: direct
and inverse rule of mixture [3,4], Hashin’s upper and lower bounds
[5,6,24], Saravanos and Chamis model [14,25], Composite Cylinder
Assemblage model [7], Mori-Tanaka model [1] and Lielens inter-
polative model [2]. These analytical models and the corresponding
predictions are presented in Appendix A.

3. Numerical methods

We employed the Finite Element (FE) method to simulate the
viscoelastic response of a transversely isotropic lamina and to com-
pare the numerical predictions to those of the existing theoretical
models mentioned in the previous section. We conducted compre-
hensive numerical analyses aimed at determining a homogenised
viscoelastic tensor for a composite lamina. This was done by ana-
lysing the response of three-dimensional random arrays of cylin-
drical fibres, mimicking the microstructure of a unidirectional
fibre composite.
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