Accepted Manuscript

Title: In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: relationship to hydrogen pickup

Author: Adrien Couet Arthur T. Motta Antoine Ambard

Didier Livigni

PII: S0010-938X(16)30820-4

DOI: http://dx.doi.org/doi:10.1016/j.corsci.2016.12.008

Reference: CS 6957

To appear in:

Received date: 22-9-2016 Revised date: 18-12-2016 Accepted date: 20-12-2016

Please cite this article as: Adrien Couet, Arthur T.Motta, Antoine Ambard, Didier Livigni, In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: relationship to hydrogen pickup, Corrosion Science http://dx.doi.org/10.1016/j.corsci.2016.12.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: relationship to hydrogen pickup

Adrien Couet^{a*}, Arthur T. Motta^b, Antoine Ambard^c, Didier Livigni^c

^aDepartment of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53715, USA

^bDepartment of Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

 $^{\rm c}\!EDF$ Research and Development, Materials and Mechanics of Components, Ecuelles, 77818 Moret-sur-Loing, France

* Corresponding author:

Tel: +1 (608) 265-7955 Email: couet@wisc.edu

Highlights:

- In-situ electrochemistry experiments of zirconium alloys in 360°C pure water.
- Oxide resistivity varies as function of time and there is a linear relationship between oxide resistivity and instantaneous hydrogen pickup fraction.
- The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

1. Introduction and motivation

1.1. Introduction

Hydrogen pick-up during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel in existing and advanced nuclear reactors. Indeed, hydrogen ingress can cause cladding embrittlement by brittle hydride precipitation in the zirconium metal, and limit cladding lifetime [1]. Although it is understood that different alloys exhibit not only different corrosion kinetics, but also different hydrogen pickup rates at different stages of corrosion [2-5], a complete understanding of the role of alloying elements in the corrosion and hydrogen pick-up mechanisms is still lacking. It is also known that the corrosion performance of zirconium alloys worsens as the alloy purity increases and almost any alloying addition (even in very small proportions)

Download English Version:

https://daneshyari.com/en/article/5440065

Download Persian Version:

https://daneshyari.com/article/5440065

<u>Daneshyari.com</u>