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a  b  s  t  r  a  c  t

The  present  work  focuses  on  the  development  of  a novel  methodology  for the  kinetic  modeling  of heavy  oil
conversion  processes.  The  methodology  models  both  the  feedstock  composition  and  the  process  reactions
at  a  molecular  level.  The  composition  modeling  consists  of  generating  a  set  of molecules  whose  properties
are  close  to those  of  the  process  feedstock  analyses.  This  synthetic  mixture  of  molecules  is generated
by a two-step  molecular  reconstruction  algorithm.  In  its  first  step,  an  equimolar  set of  molecules  is
built by  assembling  structural  blocks  in a stochastic  manner.  In the  second  step,  the  mole  fractions  of
the molecules  are  adjusted  by  maximizing  an  information  entropy  criterion.  Once  the  composition  of
the feedstock  is  represented,  the conversion  process  is  simulated  by  applying,  event  by  event,  its  main
reactions  to the  set  of  molecules  by  means  of a kinetic  Monte  Carlo  (kMC)  method.  The  methodology  has
been  applied  to  hydroconversion  of  Ural  vacuum  residue  and  both  the  feed  and  the  predicted  effluents
were favorably  compared  to the experimental  yield  pattern.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade, the world demand for high-quality low-
boiling products such as gasoline, jet fuel and diesel has continually
increased, while at the same time the available crude oils have
become increasingly heavier. Both trends boost the importance
of refining processes that are able to convert heavy petroleum
fractions, such as vacuum residues, into lighter and more valu-
able clean products [1–3]. Petroleum residue conversion processes,
such as residue hydrocracking or residue fluid catalytic cracking
(RFCC), are based on the degradation of the largest molecules
by thermal and/or catalytic cracking reactions at high temper-
ature. To accurately predict the process performances, reliable

Abbreviations: AEBP, Atmospheric Equivalent Boiling Point; BT, ben-
zothiophene; CME, chemical master equation; DBT, dibenzothiophene; GC,
Gas  Chromatography; GO, gas oil; HDA, hydrogenation of aromatic rings
(hydrodearomatization); HDM, hydrodemetallization; HDN, hydrodenitrogenation;
HDS, hydrodesulfurization; kMC, kinetic Monte Carlo; LAD, least absolute devi-
ations; LCO, Light Cycle Oil; LFER, linear free energy relationships; LSQ, least
squares; MS,  mass spectrometry; MD,  molecular discretization; NMR, nuclear
magnetic resonance; PDF, probability distribution function; QS/RC, Quantitative
Structure/Reactivity Correlation; REM, Reconstruction by Entropy Maximization;
SARA, saturates–aromatics–resins–asphaltenes analysis; SR, stochastic reconstruc-
tion; SR-REM, coupled SR-REM method; SSA, Stochastic Simulation Algorithm; T,
thiophene; VGO, vacuum gas oil; VR, vacuum residue.
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kinetic models are needed [4–6]. Kinetic models for heavy oil
conversion processes have classically been based on a lumping
strategy [7], in which molecular components are grouped into
several chemical families, according to their global properties (boil-
ing point, solubility, etc.). To improve the predictions of these
lumped models, the number of lumps is generally increased, as
exemplified by literature kinetic models for residue hydroprocess-
ing [8–20]. Besides their feed dependence and lack of robustness,
such models also seem to reach their limits due to very high
number of reaction parameters (rate constants, adsorption param-
eters) that need to be identified when applied to the heavy oil
conversion. The development of more detailed kinetic models con-
taining molecule-based reaction pathways is therefore required
[5,21] and has been ongoing over the last 2 to 3 decades for
a wide variety of chemical processes, such as pyrolysis, steam
cracking, catalytic cracking, hydrocracking, hydrotreating, catalytic
reforming, alkylation, and many more [22]. Such models expect a
molecular description of the feedstock, however. Unfortunately,
even though the most advanced analytical techniques allow to
identify a large number of compounds and classes of chemical
families, the complete and quantitative molecular detail of heavy
feedstocks still remains unknown [23–27]. Our work presents a
novel two-step kinetic modeling methodology for heavy oil con-
version processes that retains the molecular detail throughout the
method (Fig. 1). In the proposed approach, the lack of molecular
detail of the petroleum fractions is overcome by using a care-
fully selected synthetic mixture of representative molecules, the
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a� Probability of reaction � (s−1)
c� Stochastic rate parameter of reaction �
cDehydro Stochastic rate parameter of a dehydrogenation

reaction (s−1)
cHydro Stochastic rate parameter of a hydrogenation reac-

tion (s−1 atm−n)
DR Normalized cumulative probability distribution for

all possible reactions
E(xi) Shannon entropy criterion
Ea Activation energy (J mol−1)
Fj() Mixing rule for analytical property j
Frep Replication factor
h� Distinct combination of the reactant molecules of

the reaction �
J Total number of analytical constraints in the REM

method
Keq Equilibrium constant (–)
k� Deterministic rate parameter of the reaction �
M Number of possible reactions
MW Molecular weight (g mol−1)
N Number of molecules present in the predefined set

of molecules
NA Number of analyses present in the objective func-

tion
NM,i Number of measurements of analysis i
NAR Number of aromatic rings
NSR Number of saturated rings
NTR Number of thiophenes fused to the aromatic ring
nH Reaction stoichiometry with respect to molecular

hydrogen
OF Objective function
pH2 Partial hydrogen pressure (atm)
Pj Value of analytical property j
P� Normalized probability of reaction �
R Ideal gas constant (J K−1 mol−1)
RNi Random number i
x Vector of mole fractions xi
xi Mole fraction of molecule i (–)
Xexp

i,j
Experimental value of measure j of analysis i

Xcalc
i,j

Calculated value of measure j of the analysis i

ıi Deviation between the calculated and experimental
values of analysis i

�H0
R Heat of reaction at 25 ◦C (J mol−1)

�HR Heat of reaction at reaction temperature (J mol−1)

FFeed molecules Product molecules

Modeling objective
ProductFeed

Property
Calculations

Molecule-based
reaction and reactor model

Molecular
Reconstruction

Fig. 1. Molecule-based process modeling methodology (after [6]).

properties of which correspond closely to the available feedstock
analyses. The conversion process is then simulated by transforming
each molecule of this set by means of a kinetic Monte Carlo (kMC)
method.

2. Description of the methodology

As mentioned in the introduction, the proposed methodology
comprises two main steps. In the first step of the methodol-
ogy, the feedstock composition is modeled by means of a set
of molecules whose mixture properties are close to the process
feedstock analyses. The set of molecules is generated using the
SR-REM molecular reconstruction algorithm [28,29]. This approach
results from the coupling of two  methods: Stochastic Reconstruc-
tion (SR) [28,30–33] and Reconstruction by Entropy Maximization
(REM) [28,34–38]. The SR algorithm generates an equimolar set
of molecules by assembling structural blocks in a stochastic man-
ner, while the REM algorithm adjusts the mole fractions of the set
of molecules by maximizing a Shannon information entropy cri-
terion. During previous work, this algorithm was first developed
and validated for Light Cycle Oils (LCO) [28,33,39] and for vacuum
gas oils (VGO) [40,41]. The SR-REM algorithm was  also applied to
various petroleum vacuum residues by Verstraete et al. [42] and
de Oliveira et al. [29]. In the present work, the reconstruction of an
Ural vacuum residue (VR) will be illustrated.

In the second step of the methodology, the kinetics of the con-
version process is modeled using a kinetic Monte Carlo (kMC)
method, proposed by Gillespie [43] and termed Stochastic Sim-
ulation Algorithm (SSA). In this approach, the SSA identifies all
possible reactions at each instant in time. For each reaction, its rate
coefficient determines its reaction probability. Based on these prob-
abilistic considerations, the algorithm then selects a reaction event,
transforms the reactant molecule into its corresponding product,
and increments the simulation time. The simulation proceeds event
by event (reaction by reaction) until the final simulation time is
reached, leading to the set of product molecules. In the present
work, the hydroconversion of an Ural VR in a batch reactor will be
simulated and compared to the experimental data.

2.1. Composition modeling

2.1.1. Stochastic reconstruction (SR) method
The goal of the SR method is to create a representative ensemble

of probability distribution functions (PDF) for molecular structural
attributes (e.g. type of molecule, number of cores, number of aro-
matic rings, number of side chains, etc.) from available analytical
information of the given petroleum fraction. Once the PDFs have
been created, they are sampled to generate an equimolar set of
molecules whose mixture properties are close to those of the given
petroleum fraction. The transformation of the analytical informa-
tion into PDFs of molecular attributes is carried out via an iterative
procedure shown in Fig. 2.

First, appropriate molecular attributes are chosen from the
available analytical information (elemental analysis, 13C NMR,
GC–MS, etc.) of the feedstock and from expert knowledge. A PDF  is
selected to represent each molecular attribute. The PDFs employed
may  either be discrete, such as histograms, or continuous, such
as normal distribution functions, gamma  distribution functions, or
exponential distribution functions. The choice of the type of PDF
is based on its form, its flexibility and its number of parameters.
A flexible PDF is desirable in order to easily pick up the correct
form of the experimental observations, as well as a small number
of parameters to characterize it.

After the appropriate PDFs are found for each molecular
attribute, they are sampled via a Monte Carlo procedure to deter-
mine the functional and structural attributes of a molecule. The
sequence of the PDF sampling steps is defined through a building
diagram. The selected molecular attributes are randomly assem-
bled, yet respecting chemical rules. These rules avoid the creation
of impossible and improbable molecules on chemical, thermody-
namic or probabilistic grounds.
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