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a  b  s  t  r  a  c  t

Weibull  distribution  has  been  vastly  used  for modeling  fracture  strength  of  ceramic  and  composite  mate-
rials. Confidence  interval  estimation  of  Weibull  parameters  and  percentiles  in small  samples  has  been  an
important  concern  due  to  high  experimental  costs.  It  was  shown  previously  that  in classical  inference  the
Maximum  Likelihood  Estimation  Method  is  the  best  method  among  several  alternatives  for  estimating
95%  one-sided  confidence  lower  bounds  on the 1st and  10th  Weibull  percentiles,  namely  A-basis  and
B-basis  material  properties.  This  study  proposes  the  Bayesian  Weibull  Method  as  an  alternative  using
the  information  that  ceramic  and  composite  materials  have  increasing  failure  rates,  which  requires  the
Weibull  shape  parameter  to be  at least  1. Through  Monte  Carlo simulations,  it is  shown  that  the  perfor-
mance  of the  Bayesian  Weibull  Method  is  superior  in that  it achieves  the  precision  levels  of  the  Maximum
Likelihood  Estimation  Method  with  significantly  smaller  sample  sizes.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The Weibull distribution is one of the most popular models for
describing variability in the life of manufactured products. In mate-
rials science it is widely used for modeling the fracture strength
of ceramics, metallic matrix composites and ceramic matrix com-
posites [1], and the flexural strength of brittle materials [2]. It is
also used to describe the fracture toughness behavior of steels in
ductile-brittle transition region [3]. Let T denote a Weibull ran-
dom variable modeling the strength of a material. Then T has the
following probability density function with parameters �0 and m:

f (t) = m
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(
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where �0 > 0 and m > 0 are the scale and shape parameters, respec-
tively.

The cumulative distribution function F (t) giving the probability
of fracture at a stress level t is expressed as

Pr (T ≤ t) = F (t) = 1 − R (t) = 1 − e
−
(
t
�0

)m
(2)

In reliability studies, a general area of interest is to obtain good
estimates of the confidence intervals of Weibull percentiles. In
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materials science, confidence lower bounds for certain lower per-
centiles are of particular interest. There are several studies on this
particular topic using classical inference methods [4]; however, to
our best knowledge, there has been no study investigating the per-
formance of Bayesian inference in the literature. In small samples, it
is a known fact that Bayesian methods have substantial advantages
over classical methods.

It was  shown previously that in classical inference the Maximum
Likelihood Estimation (MLE) Method is the best method for esti-
mating 95% one-sided confidence lower bounds on the 1st and 10th
Weibull percentiles, namely A-basis and B-basis material proper-
ties in materials science [5]. For small samples, this study proposes
the Bayesian Weibull (BW) Method as an alternative for which non-
informative prior distributions are used for the scale parameter. For
the shape parameter, a uniform prior distribution is used with a
lower limit of 1 and upper limit of 100. There is strong evidence in
the literature (as discussed later) justifying the validity of assum-
ing the shape parameter is within this interval for any ceramic and
composite material.

For comparing the performances of the MLE  and BW meth-
ods, an extensive simulation has been conducted using algorithms
developed in C++. In these algorithms, numerical double integration
techniques have been employed for BW calculations, and Monte-
Carlo simulations are used for the comparisons.
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1.1. A review of the literature

There is a wide variety of methods for estimation of Weibull
parameters, percentiles and their confidence intervals. The hand-
books [6,7] provide a recent detailed discussion of classical and
Bayesian methods. MLE  [8], linear regression [9], and weighted
linear regression [4,10,11] are among popular classical estimation
methods. While there are major differences among classical meth-
ods, Bayesian methods basically use the same formulation, as will
be discussed later; they differ only by the choice of the prior dis-
tiributions of the parameters [6,7].

In practice, it is only possible to perform a limited number of
experiments. This leads to a small sample of measured strength
data, hence low accuracy of estimates. Therefore, statistical prop-
erties of the estimators and confidence intervals for the scale and
shape parameters have been studied extensively in the materials
science literature using classical methods [1–3,9–23].

On the other hand, there are much fewer studies on confidence
intervals of Weibull percentiles. In an early study, Bain [24] derived
exact confidence intervals of Weibull percentiles using MLE. Later,
using the results of this study, Fernandez-Saez et al. [25] conducted
a simulation for estimating confidence intervals for the (100p)th
percentile, tp. They presented the values of a statistic to be used
for computing confidence lower bounds for failure probabilities of
p = 0.01 and p = 0.05 in a tabular form. In a similar study, Barbero
et al. [26] showed that linear regression and weighted linear regres-
sion methods can also be used for derivation of exact confidence
intervals.

Barbero et al. [1] applied the results of [25,26] to A and B-basis
material properties. By fitting a curve to the simulation results,
they provided an approximate formula for computing the confi-
dence lower bound values for failure probabilities of p = 0.01 and
0.10. Birgoren and Dirikolu [27] presented a more efficient and fast
simulation tool which allowed the user to determine confidence
level, error probability and the number of simulation runs allow-
ing control and minimization of simulation error. Also, Birgoren
[4,5] stated that the best method to constuct confidence lower
bounds was the one that minimizes false coverage probabilities.
With a simulation study, he showed that the MLE  is the best method
among alternatives including linear and weighted linear regres-
sion methods [4]. Phan et al. [28] developed a computer program
for computing exact confidence intervals for Weibull parameters
and percentiles using Mennon’s method. Recently, Edwards et al.
[29] presented an induced censoring technique for estimating crit-
ical lower percentiles of a failure distribution when the hazard rate
reflects multiple aging periods (e.g. a bathtub curve). The practical
benefits of the induced censoring technique have been demon-
strated by simulation results and practical industrial insights.

Detailed formulations for computing Bayesian confidence lower
bounds (or credible lower bounds in Bayesian terminology) for
Weibull percentiles are provided in [6,7,30]. However, there has
been no study comparing their performance with those of classical
estimation methods. Furthermore, there has been no study using
Bayesian methods for estimating Weibull parameters, percentiles
and their confidence intervals in the materials science literature.

1.2. Organization of the study

In this section, we have briefly described the two-parameter
Weibull distribution, some of its properties, the purpose of this
study and previous studies in the literature. The rest of the paper
is arranged as follows. Section 2 describes 95% one-sided confi-
dence lower bounds for Weibull lower percentiles and discusses the
classical and Bayesian estimation approaches. The MLE  method is
explained in Section 3. The BW method is introduced and discussed

in Section 4. A simulation study is conducted in Section 5. Finally,
a brief discussion of the findings is provided in Section 6.

2. Estimation of confidence lower bounds for weibull
percentiles

Estimating lower percentiles in reliability studies is an impor-
tant issue for manufacturers for evaluation of products’ early
failures, specification limit improvements, warranty and cost anal-
yses [31]. The (100p)th percentile, tp, corresponding to a predefined
failure proabability p, is defined as

F
(
tp

)
= P

[
t ≤ tp

]
= p (3)

The percentile tp can be estimated using classical and Bayesian
approaches. For both approaches, the estimates of tp, t̂p, can be
quite unreliable, especially in small samples. Therefore, instead of
t̂p values, confidence lower bounds for tp have been used for the
characterization of mechanical properties [4]. In particular, these
values corresponding to the 1st and 10th percentiles, estimated
with a confidence level of 95%, are known [32] as the A-basis and
B-basis material properties,  respectively.

There are two fundamentally different approaches to estimat-
ing parameters for statistical approaches: Bayesian and classical
inference. Bayesian methods are fundamentally different from the
classical ones. The fundamental difference is characterised in the
interpretation of probability, definition of the unknown parame-
ters and the usage of prior information. In classical inference it
is assumed that the unknown parameters are constant. In con-
trast, in Bayesian inference a parameter is considered as a random
variable whose uncertainty is described by a prior probability dis-
tribution [33]. Unlike classical methods, Bayesian methods use the
prior knowledge on estimation of a parameter. It combines the
prior knowledge and the likelihood function with current observed
data using Bayes’ theorem to derive a posterior distribution for the
model parameter. Confidence intervals of parameters and functions
of parameters are calculated from posterior distributions [34].

In the literature, a variety of methods based on classical infer-
ence have been developed to estimate confidence lower bounds
for Weibull percentiles. The most common methods are MLE,
moments, least squares methods and the different modifications
of these methods. Since Birgoren [5] showed that the MLE  method
outperforms the other classical methods in the estimation of A-
basis and B-basis material properties, in this study only this method
is selected for comparion among classical methods.

3. Maximum likelihood method

The maximum likelihood estimates m̂ ve �̂0 for the Weibull
parameters m ve �0 can be obtained by solving the set of Eqs. (4)
and (5) [27].
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where t1, t2, . . .,  tn are an observed sample of size n. The Newton-
Raphson method is usually employed fo solving Eq. (4) for m̂. Then,
�̂0 is found by substituting m̂ into Eq. (5). Using the values of m̂ and
�̂0, t̂p corresponding to a predefined probability of failure p can be
obtained by Eq. (6).

t̂p = �̂0
[
In

(
1/ (1 − p)

)]1/m̂
(6)
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