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a  b  s  t  r  a  c  t

Thermal  expansion  mismatch  between  matrix  and  aggregates  can  generate  microcracks  or  decohesions
when  refractory  ceramics  are  submitted  to temperature  variation.  Earlier  analytical  studies  have  shown
that  these  phenomena  occur  for inclusions  with  dimensions  higher  than  a  critical  radius.  These  models
are  not  reliable  for inclusion  amounts  higher  than  30 vol.%.  In this  paper,  the  critical  inclusion  size  predic-
tion  by  numerical  simulation  is  presented  resulting  in  more  realistic  models.  The  values  obtained  were
compared  to  experimental  ones  from  the  literature  with  inclusion  fractions  of  up  to  45  vol.%.  Finite  ele-
ment  method  results  pointed  out a  change  in the  maximum  thermomechanical  stress  location  for  volume
fractions  close  to  43  vol.%.  Up  to this  content,  the  maximum  stress  is  at  the matrix/inclusion  interface,
whereas  for  higher  volume  fractions,  it  is  located  in  the midpoint  between  the  inclusions.  The  advances
attained  by  the  present  paper  provide  a suitable  scientific  foundation  for designing  flexible  refractory
compositions.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Thermal expansion mismatch between matrix and inclusion
can induce mechanical damage when the ceramic is subjected to
temperature variation [1–3]. If the matrix thermal expansion coef-
ficient is lower than that of the inclusions, decohesions can occur at
the matrix/inclusion interface during cooling. Conversely, when the
thermal expansion coefficient of the matrix is higher, radial micro-
cracks can be nucleated in the matrix due to the tensile stresses at
the circumferential directions [1–9]. In both cases, microcracks or
decohesion will occur when the total elastic deformation energy
overcomes its surface formation one [1]. Analytical and numerical
models are important tools to predict these critical conditions that
help to design refractory ceramics.

Prediction models related to thermal stresses have been stud-
ied since the sixties [1,10]. Selsing [10] calculated internal stresses
in biphasic ceramics considering spherical inclusions. Davidge and
Green [1] proposed an analytical model which takes into account
the mechanical and thermomechanical properties of the phases
and the cooling condition to determine the inclusion critical radius,
above which spontaneous microcracks originate. Critical size pre-
diction models are always important, as they guide the selection of
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inclusion dimensions for components where microcracks may  be
desirable or not.

Analytical models consider a constant pressure along the
matrix/inclusion interface [1,10]. This assumption is not valid for
higher volume fractions as the proximity of the inclusions may
affect their stress field vicinity [11]. FEM has already been applied
for thermal stress studies on metal/ceramic composite [12,13] and
for ceramic/ceramic ones [14–17]. Other authors used this tech-
nique to identify crack patterns induced by thermal stresses [18,19].
Joliff et al. [20] considered an axisymmetric model based on FEM to
investigate stress distribution between two  inclusions for volume
fractions of up to 40 vol.%, focusing on the matrix/inclusion inter-
action, however they were not concerned with the critical radius
prediction. This sort of simulation is based on a revolution symme-
try as a simplifying assumption, which reduces the computational
cost when compared with three-dimensional models [20].

In this context, the objective of this study is to estimate the
critical inclusion radii on biphasic refractory materials with the
help of FEM numerical simulation. This allows non-uniform stress
states attained in samples with high volume fractions of inclusions
(>30 vol.%) to be considered. In this paper, investigations of stress
field distributions have been carried out up to 60 vol.%. Neverthe-
less the method developed can also be applied to higher inclusion
fractions (<74 vol.%).

Firstly, a synthesis of the analytical model based on the litera-
ture is shown in Section 2 and their assumptions are pointed out.
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In Section 3, the materials and their respective properties, which
integrate the numerical models, are presented. Different finite ele-
ment models for predicting critical parameters are highlighted and
a strategy for solving them is explored in Section 4. Finally, a com-
parison between the numerical simulation results and literature
experimental observations, as well as a discussion about the inter-
action among inclusions for volume fractions higher than 30 vol.%
are shown in Section 5.

2. Analytical models for the critical radius prediction

Davidge and Green [1] proposed one of the first models which
considers a single inclusion embedded in an infinite matrix vol-
ume. The critical inclusion radius is calculated by comparing the
total energy stored during elastic deformation, Ut[J], and the sur-
face formation energy, Us. According to Davidge and Green [1], Ut,
for their microstructure configuration, it is written as:

Ut = P2 � a3
[

1 + �m

Em
+ 2(1 − 2�i)

Ei

]
(1)

where P [Pa] is the pressure at the matrix/inclusion interface; Em,
Ei [Pa] is the Young’s moduli; �m, �i is the Poisson’s ratios; a [m]  is
the inclusion radius; the subscript m and i refer to the matrix and
inclusion, respectively.

According to Selsing [10], the P value is related with the matrix
and inclusion properties using the following equation:

P = (˛m − ˛i) |�T |
(1 + �m)/2Em + (1 − 2�i)/Ei

(2)

where ˛m and ˛i [◦C−1] are the linear thermal expansion
coefficients and �T  [◦C] the temperature variation. In this paper
only the cooling process was considered.

The critical inclusion radius, ac, can be determined by comparing
Ut (Eq. (1)) and Us, based on an energy balance. Considering ˛i > ˛m

(debonding), Us can be expressed as 2 (4�s�a2), where �s is the
effective surface energy of the matrix [1] [J m−2]. It must be empha-
sized that �s is a property of the matrix, assuming that the cracks or
de-cohesions will originate in the matrix, making �s independent
of the inclusions volume fraction �. The fact that the total defor-
mation energy is proportional to a3, whereas the surface formation
energy is proportional to a2, enables the determination of a critical
radius (ac) when both energies are equalized [Ut(ac) = Us(ac)]:

ac = 8�s

P2[1 + �m/Em + 2(1 − 2�i)/Ei]
(3)

For ceramics with low inclusion volume fraction, the mean dis-
tance between their inclusions is large enough to assume that their
stress and strain fields are similar to a single inclusion embedded in
an infinite matrix volume [1]. Increasing the volume fraction, for a
given value of a, inclusions become closer and their stress and strain
fields mutually interact. For this latter case, the assumption of con-
stant pressure along the matrix/inclusion interface is not valid [11].
The interaction among inclusions and the influence of the volume
fraction has been evaluated by Liu and Winn [11]. They proposed an
analytical model with two inclusions and assumed that the effects
among them are calculated as a linear combination of effects in the
axis crossing the inclusions’ centers. The volume fraction of inclu-
sion (�) is a function of the inclusion’s distance (� = a3/b3) and the
stress state in a generic point P is a linear combination of effects of
the inclusion which distance is r and that distant 2b − r regarding
to this point. Liu and Winn [11] investigated the radial and circum-
ferential stresses between two inclusions and concluded that, for a
volume fraction higher than 12.5 vol.% (b < 2a), significant changes
are attained for the radial stress field. Therefore, the assumption of
isolated inclusion embedded in a infinite matrix is not reasonable
when increasing the volume fraction.

Fig. 1. Two  inclusions embedded in a finite matrix (blue circles’ radius are function
of  the volume fraction of inclusions and green circles represents the distance of the
two nearest inclusions of a generic point), based on Liu and Winn [11] model. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

In order to evaluate the radial and circumferential stress dis-
tributions between two inclusions, Liu and Winn [11] used the
stress coefficients (�� and �	) as dimensionless parameters to
analyze the matrix stress distributions. These coefficients are deter-
mined by the ratio of the radial or circumferential stress at point
P ∈ BC (Fig. 1), �(r), over the stress (radial or circumferential) at
the matrix/inclusion interface, �(a). The radial stress coefficient,
�� , and the circumferential stress one, �	 , are expressed as:

�� = ��(r)
��(a)

=
[(

a

r

)3
−

(
a

2b − r

)3
]

1
1 − �

(4)

�	 = �	(r)
�	(a)

=
[

1
�

(
a

r

)3
+

(
a

2b − r

)3
+ 4

]
1

2 + 1/�
(5)

where � is the inclusion volume fraction, � and 	 refer to the radial
and circumferential directions, respectively, and r is a point position
over the BC straight line, i.e. r ∈ [a, 2(b − a)].

Liu and Winn [11] also developed a critical radius equation,
which is presented as:

ac = 3�s[
(F�

2 +  F	
2)  −  2�mF	(2F� +  F	)

]
(2�˛

2/Em)  +  (�˛
2(1  −  2�i)

2/Ei)

(6)

where

F� = 1 − (2�−1/3 − 1)
−2

(1 − �)(�−1/3 − 1)

F	 = 1  + (2�−1/3 − 1)
−2

4(1 − �)(�−1/3 − 1)

�˛ = (˛m − ˛i) |�T |
(2�(1 − 2�m) + (1 + �m)/2Em(1 − �)) + (1 − 2�i/Ei)

3. Materials

Three examples in which ceramic composite materials resulted
in cracks during the cooling process due to the thermal expansion
mismatch, have been selected from the literature to apply the finite
element simulations and the extension of the Davidge and Green
[1] critical radius model.
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