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The wide applicability of the Weibull distribution to fields such as hydrology and materials science has
led to a large number of probability estimators being proposed, in particular for the widely used tech-
nique of obtaining the Weibull modulus, m, using unweighted linear least squares (LLS) analysis. In this
work a systematic approach using the Monte Carlo method has been taken to determining the optimal
probability estimators for unbiased estimation of m (mean, median and mode) using the general equation
F = (i —a) /(N + b) whilst simultaneously minimising the coefficient of variation for each of the average
values. A wide range of a and b values were investigated within the region 0 <a <1 and 1 <b < 1000
with the form of F = (i — a) / (N + 1) being chosen as the recommend probability estimator equation due
to its simplicity and relatively small coefficient of variation. Values of a as a function of N were presented
for the mean, median and mode m values.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extreme value distributions such as Gumbel [1], Fréchet [2]
and Weibull [3] have found use in a wide variety of applications
including weather forecasting, hydrology, finance and engineering.
Of particular concern to materials engineering researchers is the
Weibull distribution which, in its two parameter form, has found
great use for the analysis of failure data in brittle materials such as
ceramics and glass [4,5] with:

F:1_e’(%)m (1)

where F is the cumulative probability of failure, S is stress, S, is
the Weibull strength (scale) parameter and m is the Weibull shape
parameter also known as the Weibull modulus. It should be stated
that F denotes the probability that a specimen will have failed at
or below a stress, S. The probability density function for the two
parameter Weibull distribution is given by:
mrsS m-1 si m

r=5(s) ¢ 2

A wide variety of methods [6,7] have been proposed for the
estimation of S, and m from experimental data based on Eq. (1)
including maximum likelihood [8], inclusion of weighting factors
[9,10], omission of specific data [11] and the empirical correction of

E-mail address: i.davies@curtin.edu.au

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.008
0955-2219/© 2016 Elsevier Ltd. All rights reserved.

biased m values [12,13]. However, despite limitations highlighted
by several researchers, unweighted linear regression analysis (also
known as linear least squares (LLS)) remains the most widely uti-
lized technique for the estimation of S, and m due to its simplicity
and ease of use. In this method the form of Eq. (1) is linearized into
the following:

In [ln [LH =-m InS,+m InS 3)
1-F

which is of the form:

Y =a+mx (4)

where Y = In [ln [ﬁ] ] . b=—m InS, and x = InS with the values
of mand S, being easily obtained using the LLS method. It is impor-
tant to note that the value of F for an individual data point, i.e.,
individual specimen strength, may be obtained by ranking the spec-
imens from weakest, i = 1, to strongest, i = N, where i is the rank
of the specimen strength and N is the total number of specimens.

One of the simplest and most common ways to relate F to i and
N is through the relationship [3]:

1
F=813

with examples of probability distributions for the resulting values
of m and S, being shown in Fig. 1 as normalised values, i.e., val-
ues obtained from LLS divided by the actual value of m or S, and
denoted by m* and S;, respectively. In an ideal situation the curves
inFig. 1 should be centred about m* = 1 or S} = 1 and exhibit a nar-

(5)
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Fig. 1. Example probability distributions of normalised Weibull modulus, m* and normalised Weibull strength, S;, obtained from 10¢ simulations of unweighted linear least

squares analysis: (a), (b) m=5, and (c), (d) N=20.

row peak width. However, it can be seen from Fig. 1(a) and (c) that
the m* values in particular are unsymmetrical and biased towards
smaller values of m*, i.e., the average value of m* (whether it be
mean, median or mode) is less than unity with the width of the
peak decreasing as the number of specimens increased from 20 to
100 (Fig. 1(a)). Previous researchers have tended to describe the
width of such probability distributions in terms of the coefficient
of variation as follows:

CV = (6)

g
m

where CV is the coefficient of variation, ¢ is the standard deviation
and p is the mean value of m* or S}, respectively. Another point of
interest from Fig. 1 is that the probability distribution of m* appears
to depend on N but not on m whereas that of S}, depends on both N
and m - this will be discussed later. Compared to m*, the probability
distributions for S} tend to be significantly more symmetrical with
mean values close to unity and with smaller CV values (note the
difference in x axis scales for m* and S}) and this explains why most
researchers have focussed on the bias in m* results at the expense
of Sk.

As mentioned previously, several methods have been utilized
to reduce the bias in the m* data but the most popular method by
far has been to use an alternative equation to Eq. (5). Relationships
between F, i and N for extreme value distributions have been avail-
able since at least the time of Laplace at the turn of the 19th century
[14] and research into alternative forms of F has accelerated con-
siderably since the formulation of the Weibull distribution in 1939
[15]. Table 1 shows expressions for F found in the literature [ 14-40]
with early values tending to be focussed on hydrology applications
whereas most recent research has tended to result from hydrology
or materials engineering.

Whereas some of the probability estimators such as those from
Hazen [16], Weibull [15] and Bernard and Bosi-Levenbach [19]
remain popular, they all suffer from the issues of: (i) producing
biased values of m* and (ii) producing probability distributions of
m* that depend on N (as highlighted in Fig. 1(a)). It should thus
be clear that no simple expression for F exists which gives unbi-

ased values of m* for all materials engineering relevant values of N
(typically in the range of 10-100).
Due to the limitations of these simple expressions for F,
researchers started to consider a more general form for F as follows:
i—a
N+b
with

F =

(7)

O<acx<1

O0<b<1

where a and/or b are a function of N and have been denoted as a
“Variable” probability estimator in Table 1. The first researcher to
take this approach appears to have been Arnell in 1986 [28] with it
now being a standard approach for the estimation of unbiased m*
using the standard unweighted LLS technique. Despite the emerg-
ing popularity of Eq. (7) amongst researchers attempting to reduce
the bias in m*, actual use of the “Variable” probability estimators
appears scarce amongst researchers analysing experimental data
despite its acknowledged superiority compared to standard expres-
sions for F [15,16,19]. The present author attributes this to three
main factors, namely: (i) the lack of expressions for F which are
valid for all engineering relevant values of N (it often being the case
that F is defined only for specific discrete values of N), (ii) inconsis-
tency in the recommended values of “variable” F between different
researchers and (iii) the lack of expressions from a single researcher
for F that can be applied to all possible average values, i.e., mean,
median and mode.

Therefore, in the present work the author aims to use a system-
atic approach to investigate the range and appropriateness of Eq.
(7) to provide simple expressions for F that are suitable to values
of N in the range 10-150 and accurate for all average values, i.e.,
mean, median and mode.

2. Experimental procedure

The general approach for this research was to use a Monte
Carlo procedure to pick strength data for a given number of spec-
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