

Contents lists available at ScienceDirect

Microelectronic Engineering

Research paper

Electronic transport properties and CO adsorption characteristics on TiO₂ molecular device – A first-principles study

which can be used as CO sensor.

© 2016 Elsevier B.V. All rights reserved.

V. Nagarajan, R. Chandiramouli *

School of Electrical & Electronics Engineering, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, India

A R T I C L E I N F O

ABSTRACT

Article history: Received 5 December 2015 Received in revised form 26 March 2016 Accepted 8 May 2016 Available online 10 May 2016

Keywords: TiO₂ CO Nanostructure Molecular device Adsorption

1. Introduction

The emission of hazardous gas contaminants from industrial, residential and commercial places causes severe risk to human life. The environmental monitoring plays a significant role in controlling the pollutants. Generally, a variety of analytical techniques are utilized to sense the hazardous gas in the environment in the order of parts per million (ppm). The analytical techniques require sophisticated instruments and knowledge in interpreting the results obtained from the analysis. Moreover, the solid state gas sensors are good substitute to detect the contaminant in ppm range [1]. Titanium dioxide (TiO₂) is one of the most significant transition metal oxides, which receive great attention owing to its excellent stability, chemical inertness, low cost and non-toxicity among the solid state semiconductor devices [2,3]. TiO₂ belongs to n-type semiconductor with wide band gap of 3.23 eV [4-7]. In addition, TiO₂ exhibits different polymorphs namely brookite, n-TiO₂, rutile and anatase phases [8,9]. In the past few decades, TiO₂ has been elaborately investigated both experimentally and theoretically. Moreover, TiO₂ exhibits excellent physical and chemical properties [10], which can be used as electrochromic, antifogging, biomedical coatings, pigments, paints, chemical sensors, dye-sensitized solar cells and photocatalyst [11–15]. The properties of TiO₂ can be greatly enhanced with the substitution of impurities and also through creating defects in the nanostructure [16,17]. The literatures show that there are many reports in studying the photocatalytic property of TiO₂ with the

E-mail address: rcmoulii@gmail.com (R. Chandiramouli).

incorporation of impurities such as Pd [18], Au [19], Pt [20,21], and Hg [22]. The nanostructures and their various properties of TiO_2 have been extensively studied in order to improve their sensing performance towards carbon monoxide (CO) [23-28]. Even though TiO₂ exhibits in three different phases, rutile TiO₂ possesses tetragonal structure and rutile phase is more stable at most temperatures and pressures up to 60 kbar than anatase and brookite phases. TiO₂ is also thermodynamically favourable phase. The rutile phase grows much faster than other phases. Zhang et al. reported that both anatase and brookite phases transforms to rutile phase after a certain particle size [29]. Furthermore, rutile TiO₂ is more stable than anatase phase for particle size greater than 14 nm [30]. The rutile TiO₂ nanotubes exhibit different optoelectronic properties compared to other phases [30]. The motivation behind the present work is to investigate the rutile TiO₂ nanostructure and to improve the CO adsorption properties of TiO₂ nanostructures. The detection of trace amount of CO toxic gas using TiO₂ base material will alert the personnel working in a toxic environment. The threshold limit for CO as per Occupational Safety and Health Administration (OSHA) is 50 ppm averaged over eight hours work shift [31]. Beyond the threshold limit, CO may cause harmful effects on humans. In this work an attempt has been made to investigate CO adsorption properties on rutile TiO₂ molecular device.

2. Computational methods

The transport and CO adsorption properties on rutile TiO₂ molecular device is studied using DFT method. The

transport characteristics of TiO₂ nanostructure are described in terms of electron density, density of states and

transmission spectrum. The applied bias voltage in TiO₂ device increases the peak maxima in the valence band

as well as in the conduction band. The electron density in TiO_2 nanostructure is found to be more along oxygen

sites than in titanium sites. The transmission spectrum of TiO₂ molecular device provides clear insights on transmission of electrons at various energy intervals. The adsorption properties of CO on TiO₂ molecular device is stud-

ied in terms of voltage and resistance characteristics along the scattering region. The findings of the present study

give a clear vision on improving the electronic transport and CO adsorption properties on TiO₂ molecular device,

The first-principles calculation on rutile TiO_2 molecular device are carried out by density functional theory (DFT) method facilitating TranSIESTA module in SIESTA package [32]. TiO_2 nanostructure is optimized by decreasing the atomic forces on the atoms to be smaller

^{*} Corresponding author at: School of Electrical & Electronics Engineering, SASTRA University, India.

than 0.05 eV/Å. The generalized gradient approximation (GGA) combined with Perdew-Burke-Ernzerhof (PBE) exchange correlation functional is utilized to investigate the electron-electron interaction [33, 34]. The Brillouin zones are sampled with $1 \times 1 \times 50$ k points. The CO adsorption characteristics on TiO₂ nanostructures are carried out with the help of SIESTA package, in which the core electrons are substituted suitably by Troullier-Martins pseudopotentials for titanium and oxygen atoms. Further, the electronic wave function of titanium and oxygen atoms are expanded in terms of its basis set, which mainly depends on the numerical orbitals. The optimization of TiO₂ nanostructure is supported with double zeta polarization (DZP) basis set for both the electrodes and scattering region in the present study [35]. In order to study the electronic properties of TiO₂ and to exclude the interaction of TiO₂ nanostructure with its periodic images, 10 Å vacuum padding is modelled along x and y axes. This facilitates the computation process while analyzing the density matrix Hamiltonian. The atoms in TiO₂ nanostructure freely move along their positions until the convergence force lesser than 0.05 eV/Å is achieved.

3. Results and discussion

3.1. Structure of TiO₂ nanostructure

The TiO₂ nanostructure device is built with the help of International Centre for Diffraction Data (ICDD) Card number: 89-4202, which exhibits tetragonal structure [36]. In the designed TiO₂ molecular device, there are three regions, namely right electrode, scattering region and left electrode. The scattering region of the TiO₂ molecular device consists of TiO₂ nanostructure placed between two electrodes. The width of the scattering region is around 10.430 Å and the width of the left and right electrode is 1.946 Å. TiO₂ nanostructure is repeated thrice along a and b-axis each and five times along c-axis. Along TiO₂ scattering region, a potential difference is maintained between the right and left electrodes for the flow of current. The scattering region of TiO₂ nanostructure consists of fifty four titanium atoms and hundred and eight oxygen atoms. The region on the right and left electrodes include eighteen titanium atoms and thirty six oxygen atoms each. The potential difference of +V/2 and -V/2 is maintained across the left and right electrode through TiO₂ scattering region. A potential difference from 1.4V to 3V in step of 0.2V is varied between left and right electrode. Moreover, the variation in the bias voltage leads to the change in transmission and density of states along TiO₂ molecular device. Fig. 1 refers to the schematic diagram of TiO₂ molecular device.

Fig. 1. Schematic of TiO₂ molecular device.

Fig. 2. Band structure of TiO_2 nanostructures [G - gamma point-Center of Brillouin Zone (0, 0, 0), Z - Center of a square face (0, 0, 0.5), A - Corner point in simple tetragonal (0.5, 0.5, 0.5), M - Center of an edge (0.5, 0.5, 0)].

3.2. Band structure of TiO₂ nanostructures

The band structure throws the light on the materials properties of TiO_2 nanostructures. Moreover, it confirms the insights on nanostructures, whether the material possesses semiconducting or metallic properties. Fig. 2 depicts the band structure of TiO_2 nanostructures [G - gamma point-Center of Brillouin Zone (0, 0, 0), Z - Center of a square face (0, 0, 0.5), A - Corner point in simple tetragonal (0.5, 0.5, 0.5), M - Center of an edge (0.5, 0.5, 0)]. The band gap may be calculated along the gamma point (G) in the band structure diagram. It is observed

Fig. 3. PDOS of TiO₂ nanostructure.

Download English Version:

https://daneshyari.com/en/article/544114

Download Persian Version:

https://daneshyari.com/article/544114

Daneshyari.com