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Whereas the conventional definition of the static structure factor, S(Q), means that, for any sample or structural
model, its value at zero Q, S(0), is identically equal to zero, the structures of ideally-disordered materials, such as
single-phase liquids and amorphous solids, incorporate long-range density fluctuations that are characterised by
a non-zero limiting value (S0) of S(Q ≠ 0) asQ→ 0. An analysis of these density fluctuations in terms of their Fou-
rier components leads to the definition of an ideally-disorderedmaterial as one that exhibits a continuous, isotro-
pic distribution of Fourier wavelengths, A(Λ), that decays asymptotically to zero at Λ = ∞. On the other hand, a
similar analysis for a periodic boundary model reveals that the form of the intermediate-range order at higher
inter-atomic distances, r, and that of the long-range density fluctuations are fundamentally different from
those of a real amorphousmaterial. The severely limited number of (especially the longer) allowed Fourierwave-
lengths, Λ, coupled with their strictly defined orientations within the unit cell of a periodic boundary model,
means that such amodel is inherently crystalline, and that no amount of orientational (polycrystalline) averaging
can overcome this problem. The variousmethods of deriving S(Q) for both periodic-boundary and clustermodels
are discussed, and it is shown that, since a periodic boundary model is not ideally-disordered, a polycrystalline
average does not yield a consistent value for S0, but one that is dependent on its exact method of calculation. It
is therefore concluded that, to investigate the longer-range density fluctuations in amorphous materials, it is es-
sential to employ a cluster model, rather than one generated with a periodic boundary.
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1. Introduction

To date, the vast majority of computer modeling/simulation studies
of amorphous materials have employed periodic boundary conditions,
and have concentrated on the short- and earlier intermediate-range
(i.e. local) structure and the properties derived therefrom.More recent-
ly, however, the possibility of generating large atomisticmodels, such as
those of amorphous silicon [1,2] and vitreous silica [1], together with
renewed interest in the form of the longer-range density fluctuations
in amorphous materials, has led to attempts to use such models to cal-
culate the limit, as the scattering vector magnitude, Q, approaches
zero, of the static structure factor, S(Q). For both of these single-
component materials, composition fluctuations are absent, and so
S(Q), is solely the result of spatialfluctuations in atomic number density.
The question thus arises as to the form of these longer-range density
fluctuations in different types of amorphous material, as compared to
those in the structural models. For the former, they depend on the

detailed preparation conditions and subsequent thermal history, and for
the latter they reflect themethod of generating themodel co-ordinates.
There is, of course, absolutely no reason why the form of these density
fluctuations should be the same for different types of amorphous ma-
terial, or model. This is particularly true of atomistic structural models
generated with a periodic boundary, for which it will be demonstrated
that the density fluctuations are inherently anisotropic (crystalline),
and do not match those in a real amorphous solid.

Whilst the role of long-wavelength real-space densityfluctuations in
determining themagnitude of S(Q) at low scattering vectormagnitudes,
Q, is well established, it is not generally appreciated that the short-
and intermediate-range order are similarly related to the shorter-
wavelength fluctuations in the atomic number density. In addition,
there is considerable confusion in the literature as to the effect of peri-
odic boundary conditions on the extraction of both the static structure
factor, S(Q), and the real-space total correlation function, t(r), for a
structural model with a periodic boundary. Hence the various methods
of calculating these functions will be discussed, and recommendations
made as to the optimummethod in each case, whilst taking into account
the raison d'être for the model in question.

For simplicity, the theoretical background in this paper is restricted
to elemental materials, but identical arguments apply to chemically-
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ordered binary systems, such as vitreous silica, and to the composition
fluctuations in materials that are not chemically ordered. Similarly, the
discussion of periodic-boundary models will be limited to those having
a pseudo-cubic unit cell, such as the “Sillium”model of amorphous Si/Ge
due to Wooten & Weaire [3–5] used here. This model only has 216
atoms in the unit cell, which limits both the statistical accuracy and
the reciprocal-space resolution of S(Q), but these are certainly adequate
to illustrate the general principles discussed in this paper.

2. Small-Q scattering

For an isotropic, single-phase, single-component amorphousmateri-
al, such as amorphous silicon or vitreous silica, the limiting behaviour, as
Q → 0, of the static structure factor, S(Q), as determined from small-
angle neutron scattering (SANS) or small-angle X-ray scattering
(SAXS) experiments takes the form

S Qð Þ ¼ S0 þ c2Q
2; ð1Þ

in which S0 is the zero-Q limit and c2 is a constant, as may be seen from
Fig. 1 [6], which shows such a fit to SANS data for vitreous silica. Note
that S(Q) is an even function, and so there is no term in Q; i.e. c1 = 0.
Strictly, of course, small-Q scatteringmeasurements can only be record-
ed down to a minimum scattering vector magnitude, Qmin, but there is
no experimental evidence that S(Q) for such a macroscopic sample is
not continuous down to exceedingly small values of Q (see Section 5).

In the case of a liquid [7], the value of S0 at temperature, T, is given by

S0 ¼ ρ°kBTχ Tð Þ; ð2Þ

where ρ° is its average number density and

χ Tð Þ ¼ χ0 Tð Þ þ χ∞ Tð Þ ð3Þ

is its isothermal compressibility, which may be separated into topolog-
ical, χ0(T), and rigid network, χ∞(T), components [6,8]. The topological
component, which arises from changes in the network topology
resulting from a rearrangement of bonding, is only present for the liquid
state, and disappears on passing into the (crystalline or amorphous)
solid state, asmay be seen from Fig. 2 of Ref. 6. The rigid network contri-
bution does not involve changes in the network topology and, in the liq-
uid state, can be measured at frequencies much higher than those
associated with bond switching. Conversely, a measurement of the
totalχ(T) for a liquidmust bemadeusing a low frequency or static tech-
nique [8].

A glass is formed by quenching themelt and, if it is assumed that the
topological densityfluctuations present in the super-cooled liquid at the
glass transition temperature, Tg, (strictly the fictive temperature, Tf,
which varies with the fluctuations in the average number density, ρ°)
are “frozen-in” as the liquid is quenched through the glass transition re-
gion, then S0 for the glass may be calculated from this part of the

isothermal compressibility of the super-cooled liquid at Tg, whilst
correcting the rigid network component to the ambient temperature,
T [6,8]:

S0 ¼ ρ°kB Tg χ Tg
� �

−χ∞ Tg
� �� �þ Tχ∞ Tð Þ� �

¼ ρ°kB Tgχ0 Tg
� �þ Tχ∞ Tð Þ� �

: ð4Þ

For vitreous silica, the value of S0 from Eq. (4) (0.030 [6,8]) is in excel-
lent agreement with the SANS data from Ref. 6 (S0 = 0.0299 ±
0.0020) (see Table 1 of Ref. 6).

As indicated in Section 1, the longer-range density fluctuations in
amorphous materials formed other than by melt-quenching, depend
on the details of their preparation, and those for structural models on
the method used in their generation. In particular, it should be noted
that S0 for a static structural model only involves the contribution
from χ0(Tg), such that

S0 ¼ ρ°kBTgχ0 Tg
� �

: ð5Þ

Thus it is to be expected that the value obtained for S0 from a static
model should be lower than that for the corresponding amorphous
solid, as calculated from Eq. (4).

3. Static structure factor

The static structure factor, S(Q), for an isotropic amorphousmaterial
is conventionally defined as

S Qð Þ ¼ 1þ ∫∞04πr
2 ρ rð Þ−ρ°½ � sin Qrð Þ= Qrð Þ dr: ð6Þ

The radial density function, ρ(r), is, on average, the atomic number den-
sity at a distance r from an arbitrary origin atom, and ρ° is the average
number density for the sample as a whole. The first term (unity) on
the right hand side of Eq. (6) is known as the self-scattering and the sec-
ond as the distinct-scattering. Alternatively,

Q S Qð Þ−1½ � ¼ ∫∞0d rð Þ sin Qrð Þ dr; ð7Þ

in which Q[S(Q)− 1] is known as the interference function, and d(r) is
the real-space differential correlation function,

d rð Þ ¼ 4πr ρ rð Þ−ρ°½ � ¼ t rð Þ−t° rð Þ: ð8Þ

t(r) is the total correlation function,

t rð Þ ¼ 4πrρ rð Þ; ð9Þ

and t°(r) is the contribution from the average number density ρ°,

t° rð Þ ¼ 4πrρ°: ð10Þ

It is extremely important to note that the contribution from ρ°, S°(Q), is
specifically excluded from the definition of S(Q). For an infinite sample,
the former gives rise to a δ-function atQ=0and, in the case of a (poly)-
crystalline material is equivalent to the 000 Bragg reflection.

4. Structure factor at zero Q, S(0)

For a finite sample/model of volume VS, containing NS atoms,

S Qð Þ ¼ 1þ ∫∞04πr
2 ρ rð Þ−ρ°½ � F rð Þ sin Qrð Þ= Qrð Þ dr; ð11Þ

Fig. 1. SANS data for vitreous silica [6] (closed circles), together with a fit (solid line) to Eq.
(1), with S0 = 0.0299± 0.0001 and c2 = 0.058 ± 0.011. (Allowing for the uncertainty on
the absolute normalisation increases the overall uncertainty on S0 to ±0.0020.)
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