Accepted Manuscript

Title: Tunable phase and upconverting luminescence of Gd³⁺ co-doped NaErF₄:Yb³⁺ nanostructures

Authors: Wanying Xie, Xitao An, Li Chen, Jing Li, Jing Leng, Wei Lnull, Ligong Zhang, Yongshi Luo

PII: S0025-5408(17)32337-1

DOI: http://dx.doi.org/10.1016/j.materresbull.2017.08.033

Reference: MRB 9511

To appear in: *MRB*

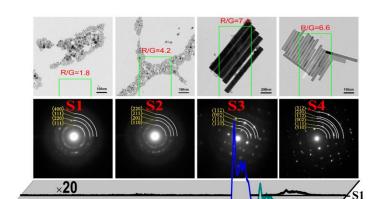
Received date: 17-6-2017 Revised date: 12-8-2017 Accepted date: 13-8-2017

Please cite this article as: Wanying Xie, Xitao An, Li Chen, Jing Li, Jing Leng, Wei Lx1da;, Ligong Zhang, Yongshi Luo, Tunable phase and upconverting luminescence of Gd3+ co-doped NaErF4:Yb3+ nanostructures, Materials Research Bulletinhttp://dx.doi.org/10.1016/j.materresbull.2017.08.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tunable phase and upconverting luminescence of Gd^{3+} co-doped $NaErF_4$: Yb^{3+} nanostructures


Wanying Xie¹, Xitao An^{1,2}, Li Chen^{* 1,3}, Jing Li³, Jing Leng³, Wei Lu

⁴, Ligong Zhang⁵, Yongshi Luo⁵

- ¹ School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yan'an Street, Changchun, Jilin 130012, China
- ² School of Chemistry and Life Science, CCUT, 2055 Yan'an Street, Changchun, China
- ³ School of Basic Sciences, CCUT, 2055 Yan'an Street, Changchun, China
- ⁴ School of Materials Science and Engineering, CCUT, 2055 Yan'an Street, Changchun, China
- ⁵ State Key Laboratory of Luminescence and Applications, CIOMP, CAS, Changchun, China
- * Corresponding author: chenli@ccut.edu.cn

Graphical abstract

The phase, morphology and emission efficiency of upconverting NaErF₄:Yb³⁺ nanostructures are simultaneously tuned by controlling the reaction temperatures and Gd³⁺ doping contents. The higher synthesis temperature leads to the morphology evolution from nanoparticles to nanorods. The integrated red to green intensity ratio is much improved for Gd³⁺ codoping samples. The radiative/non-radiative transition probabilities of Er³⁺ different emission states could be affected by Gd³⁺ doping in different ways as for nanoparticles and nanorods, respectively. NaErF₄:Yb³⁺,Gd³⁺ nanosctructures are expected to have promising applications in multimodal bioimaging for deeper tissue penetration.

Download English Version:

https://daneshyari.com/en/article/5441842

Download Persian Version:

https://daneshyari.com/article/5441842

<u>Daneshyari.com</u>