ELSEVIER

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Conformal construction of polyaniline shell on cobalt oxide nanoflake core for enhanced Li ion storage

Yong-jin Mai^{a,*}, Xinhui Xia^b, Xiao-hua Jie^a

^a Guangdong University of Technology, Guangzhou, 510006, China

^b State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

ARTICLE INFO

ABSTRACT

Article history: Received 26 May 2017 Received in revised form 4 June 2017 Accepted 4 June 2017 Available online 6 June 2017

Keywords: Porous materials Thin films Li ion batteries Conducting polymer Energy storage and conversion

It is of great importance to controllably synthesize non-axial metal oxide/conducting polymers arrays for construction of high-performance electrochemical devices. In this work, we develop a facile electro-polymerization method to conformally coat interwoven polyaniline (PANI) shell on the preformed porous Co_3O_4 nanoflakes forming non-axial Co_3O_4 /PANI core/shell arrays. Uniform conductive PANI network and high porosity are realized in the non-axial core/shell arrays. As active materials for Li ion storage, the Co_3O_4 /PANI core/shell arrays show superior high-rate performance including lower polarization, higher reactivity and better cycling life, as compared to the unmodified Co_3O_4 nanoflake arrays. The capacity deterioration of the Co_3O_4 /PANI arrays is restricted to a very lower level with a capacity of 871 mAh g⁻¹ at 0.25 A g⁻¹ after 100 cycles, better than the Co_3O_4 counterpart (669 mAh g⁻¹ at 0.25 A g⁻¹). This non-axial combination opens up a new door for developing advanced composite arrays for energy storage.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rational construction of active organic-inorganic composites is highly important for the advancement of electrochemical energy storage because of their potential reinforcement effects for capacity and rate capability [1–4]. Integrated metal oxide/ conducting polymers (CPs) arrays are becoming one of the most popular electrode forms due to binder-free and additive-free characteristics. Particularly, sophisticated integration of conducting polymers (such as polyaniline (PANI)) and metal oxides (e.g., Co₃O₄) into a tailored core/shell array structure is highly attractive due to that they can modify each other to obtain enhanced transfer path of electrons and better volume buffer layer arising from CPs [5–7]. The current challenge is to directionally fabricate metal oxide/CPs composites that keep or enhance the best properties of both components while eliminating or reducing their particular limitations [1,8–11]. Hence, facile and directional synthetic strategies are highly desirable.

To date, there are two common ways to assemble CPs on metal oxides. The first way is chemical polymerization [12], which is usually adopted to prepare powder composites. But it is difficult to control the precise morphology because of the complex reaction

http://dx.doi.org/10.1016/j.materresbull.2017.06.005 0025-5408/© 2017 Elsevier Ltd. All rights reserved.

conditions. The second one is electro-polymerization [13,14], which possesses unique flexibility in the control of morphology of the final products via accurate choice of electrolyte and electrodeposition conditions. Electro-polymerization is considered to be an ideal method for preparation of metal oxide/CPs composite arrays. Over recent years, metal oxide/CPs core/shell arrays have been widely studied and enhanced electrochemical performance has been demonstrated in different electro-polymerized systems including CoO/polypyrrole (PPY) [15], TiO₂/polyaniline (PANI) [16], NiO/PANI [17], NiO/PEDOT [18], cobalt oxide/ PEDOT [16], because the composite interface/chemical distributions are homogeneous and electron/ion transfer are greatly improved [1]. However, the above metal oxide/CPs core/shell arrays are focused on coaxial arrays, not non-coaxial. It is known that electron transfer and structural stability would be reinforced on lengthwise at coaxial core/shell arrays with the help of CPs [19], but still weak on transverse. Therefore, it would be very interesting to fabricate non-coaxial metal oxide/CPs core/shell arrays with new electrical/electrochemical properties on both lengthwise and transverse for electrochemical energy storage.

Free-standing cobalt oxide (Co_3O_4) nanoarrays have been widely studied as active materials for electrochromics [20], electro-catalysis [21], supercapacitors [22,23], and lithium ion batteries [24]. Previously, we reported coaxial Co_3O_4/CPs core/shell arrays with coaxial nanowire structure [16]. In this work, we report

^{*} Corresponding author. E-mail address: myjmouse@163.com (Y.-j. Mai).

a facile method for conformal deposition of PANI shell on Co₃O₄ nanoflake core forming non-axial Co₃O₄/PANI core/shell arrays. Non-axial interwoven PANI conductive shell is realized by the electro-polymerization. Compared to the unmodified Co₃O₄ nanoflake arrays, the designed non-axial Co₃O₄/PANI core/shell arrays show improved high-rate capacity and long-term cycles due to the unique non-coaxial structure with accelerated electron/ion transfer and better structural stability. The developed synthetic strategy can be used to prepare other non-axial metal oxide/CPs composite arrays for application in energy storage and catalysis.

2. Experimental

2.1. Preparation of non-axial Co₃O₄/PANI core/shell arrays

Firstly, the porous Co_3O_4 nanoflake arrays were prepared by a facile hydrothermal synthesis method as follows. The reaction solution was composed of 7.5 mmol of $Co(NO_3)_2$ and 37.5 mmol urea in 75 ml of distilled water, and then transferred into Teflon-lined stainless autoclave liners. Nickel foam substrates were immersed into the reaction solution. After growth for 12 h at 95 °C,

the samples were rinsed and then annealed at 450 °C in argon for 3 h to obtain self-supported porous Co_3O_4 nanoflake arrays. Then, the non-axial Co_3O_4 /PANI core/shell arrays were fabricated by the following electro-polymerization method. The Co_3O_4 nanoflake arrays were acted the backbone for the growth of PANI shell. Electrolyte for electro-polymerization of PANI was obtained by dissolving 1 ml aniline into 150 ml of 0.05 M H₂SO₄ solution. The electro-polymerization of PANI was carried out in a three-compartment system, the above Co_3O_4 nanoflake arrays electrode as the working electrode, Ag/AgCl as the reference electrode and a Pt foil as the counter-electrode. The PANI film was deposited by applying constant anodic current density of 3 mA cm⁻² for 1800s to form the final non-axial Co_3O_4 /PANI core/shell arrays.

2.2. Characterizations

The samples were characterized by X-ray diffraction (XRD, RIGAKU D/Max-2550 with Cu K α radiation), field emission scanning electron microscopy (FESEM, FEI SIRION), high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2010F)

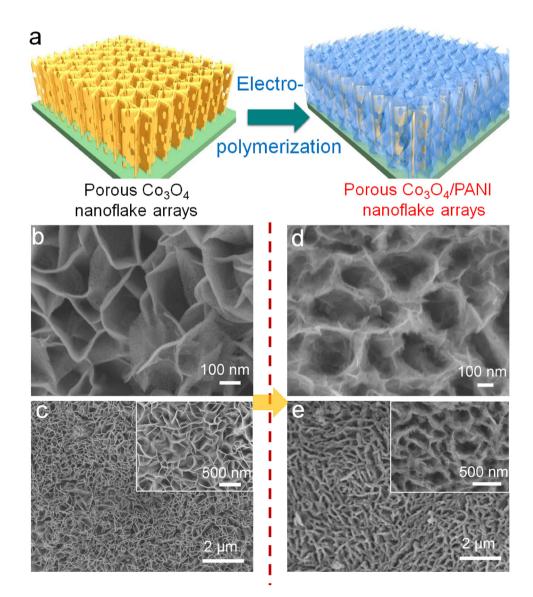


Fig. 1. (a) Schematics of growth of non-axial Co₃O₄/PANI core/shell arrays. SEM images of (b, c) porous Co₃O₄ nanoflake arrays and (d, e) non-axial Co₃O₄/PANI core/shell arrays.

Download English Version:

https://daneshyari.com/en/article/5442057

Download Persian Version:

https://daneshyari.com/article/5442057

Daneshyari.com