FISEVIER

Contents lists available at ScienceDirect

Materials Research Bulletin

journal homepage: www.elsevier.com/locate/matresbu

Hydrothermal synthesis of In₂O₃-loaded BiVO₄ with exposed {010} {110} facets for enhanced visible-light photocatalytic activity

Qiongjun Liu, Yan Liu, Bifen Gao, Yilin Chen, Bizhou Lin*

Department of Applied Chemistry, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, PR China

ARTICLE INFO

Article history: Received 17 August 2016 Received in revised form 5 November 2016 Accepted 8 November 2016 Available online 23 November 2016

Keywords:

- A. Semiconductors
- A. Inorganic compounds
- B. Solvothermal
- D. Catalytic properties

ABSTRACT

Under the strategies of the morphology engineering method and the heterojunction construction, $In_2O_3/BiVO_4$ composites with different molar ratios were prepared through a simple two-step hydrothermal route. The as-prepared monoclinic $BiVO_4$ showed a truncated bipyramid shape with high exposed {010} {110} facets, on which the hexagonal In_2O_3 nanoparticles were grown, leading to the formation of a heterojunction structure. Due to the high-active exposure facets of $BiVO_4$ and the improved photogenerated carriers separation efficiency of the formed heterojunction, $In_2O_3/BiVO_4$ exhibited excellent visible-light photocatalytic activity in the degradation of rhodamine B.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Visible-light photocatalysis has attracted remarkable interest, reflecting that it can harvest more energy from the incoming solar energy offers a desirable way to solve energy and environmental issues [1,2]. The process of semiconductor-based photocatalysis in a heterogeneous system involves the generation, migration, and separation of electron-hole pairs [3]. However, up to now, the efficiency of photocatalysis is still too low for practical applications. One disastrous drawback is the fast recombination of photoinduced electron-hole pairs. It was reported that constructing semiconductor heterojunction structures can increase the charge separation efficiency [2,4].

Recently, monoclinic bismuth vanadate (m-BiVO₄) with a bandgap of about 2.4 eV has been widely investigated [5–7]. It was demonstrated that m-BiVO₄ with high exposed $\{010\}\{110\}$ facets has high activity [8–10]. However, the efficiency of m-BiVO₄ is relative low owing to its poor charge transport characteristics and weak surface adsorption properties [11,12]. To improve its photocatalytic efficiency, researchers found that the introduction of oxide semiconductor materials to fabrication heterojunctions with BiVO₄ can inhibit the fast recombination of the photogenerated carriers and enhance the photocatalytic efficiency [8,13–15]. Hexagonal and cubic indium oxides (h- and c-In₂O₃) with bandgaps of \sim 3.0 eV are candidates in the photocatalytic degradation of organic pollutants [16]. The energy band

E-mail addresses: bzlin@hqu.edu.cn, bzlinhqu@126.com (B. Lin).

alignments of In₂O₃ and m-BiVO₄ are well matched. It is expected that In₂O₃ is a suitable material to fabricate a new heterojunction structure with m-BiVO₄ for enhancing the separation efficiency of the photogenerated carriers. In 2015, Jian et al. employed the onepot hydrothermal method to prepare c-In₂O₃/m-BiVO₄ heterostructured composites with high visible-light photocatalytic activity [14], in which the as-obtained m-BiVO₄ particles showed a disordered morphology. Under the strategies of the morphology engineering method and the heterojunction construction, in this work, we synthesized m-BiVO₄ particles with high-active {010} {110} exposure facets via a simple hydrothermal route. Subsequently, the heterostructured In₂O₃/BiVO₄ composites, in which h-In₂O₃ nanoparticles were grown on the surfaces of m-BiVO₄ through a facile solvothermal approach. The as-prepared In₂O₃/ BiVO₄ composites exhibited enhanced visible-light photocatalytic activity in the degradation of a model dye (rhodamine B, RhB).

2. Experimental

2.1. Preparation of In₂O₃/BiVO₄ heterojunctions

All chemicals were of analytical reagent grade and used without further purification. BiVO $_4$ was synthesized by a hydrothermal route. 0.36 mmol Bi(NO $_3$) $_3\cdot$ 5H $_2$ O and 0.36 mmol NH $_4$ VO $_3$ were dissolved into 8 mL of 2 M HNO $_3$ solution and 22 mL of 2 M NH $_3\cdot$ H $_2$ O solution, respectively. After violent stirring for 30 min, the NH $_4$ VO $_3$ solution was added drop-wise into the Bi(NO $_3$) $_3$ solution. And the pH of the mixed solution was adjusted to 0.6 using NH $_3\cdot$ H $_2$ O solution and kept stirring for 2 h. The resultant mixture was transferred into a 100-mL Teflon-lined stainless-steel

^{*} Corresponding author.

autoclave, and then was heated to and maintained at $200\,^{\circ}\text{C}$ for 24 h. After cooling, a yellow powder was centrifugalized, washed with water and ethanol for three times, and dried at $80\,^{\circ}\text{C}$ in a drying oven.

 $In_2O_3/BiVO_4$ composites with different ratios were prepared under hydrothermal conditions with a fixed 0.1 mmol addition of the as-synthesized BiVO₄ and a fixed $In(NO_3)_3$:urea ratio (1:30). In a typical synthesis route for preparing In_2O_3 :BiVO₄ = 0.3:1 (referred as S3 thereafter), 0.06 mmol $In(NO_3)_3$ and 1.8 mmol urea with 0.1 mmol BiVO₄ were dispersed in the mixture of 25 mL diethylene glycol and 10 mL water by ultrasonic vibrating for 1 h. The obtained mixture was transferred into a 50-mL autoclave, and then heated to and maintained at 180 °C for 24 h. After reaction, the precipitate was centrifugalized, washed with water for three times, and calcined at 450 °C for 2 h. The products were referred as S0.5 (for 0.010 mmol $In(NO_3)_3$ addition), S1 (0.02 mmol), S2 (0.04 mmol) and S3 (0.06 mmol), S4 (0.08 mmol), respectively. The pure In_2O_3 was also prepared by the same procedure without BiVO₄.

2.2. Characterization

The crystal structures were characterized by powder X-ray diffraction (XRD) using a Rigaku D/max-2500 diffractometer with Cu K α radiation. The morphology was observed on a field emission scanning electron microscope (FE-SEM, Hitachi, SU-70) and a high resolution transmission electron microscope (HRTEM, JOEL JEM-2010). X-ray photoelectron spectroscopy (XPS) was carried out on a VGESCALAB MK II with an Al K α X-ray source. The photocurrent responses were measured in Na₂SO₄ electrolyte (0.1 M) using the CHI660D electrochemical station in a conventional three-electrode configuration under visible light irradiation. UV-vis diffuse absorption spectra were recorded on a Shimadzu UV-2550 spectrophotometer using BaSO₄ as the reference.

2.3. Evaluation of photocatalytic activity

The activities of the photocatalysts were evaluated by the degradation of RhB aqueous solution under visible light irradiation, provided by A Changtuo 500W Xe arc lamp through a 10-cm IR water filter and a cutoff filter (λ > 400 nm). In a typical run, the experiment was carried out by adding 50 mg photocatalyst to 100 mL RhB solution with an initial concentration (5 mg/L). Before illumination, the mixture was stirred in dark for 30 min to ensure the adsorption—desorption equilibrium. At an irradiation interval of every 0.5 h, 4 mL suspension was collected and the RhB

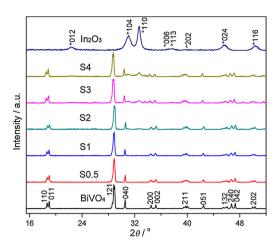


Fig. 1. XRD patterns of In₂O₃/BiVO₄ composites.

concentration was determined by measuring the maximum absorbance at 554 nm using a UV-vis spectrophotometer.

3. Results and discussion

The XRD patterns of samples are illustrated in Fig. 1. It clearly shows that all of them were well crystallized and the diffraction peaks could be assigned to monoclinic BiVO₄ (JCPDS 14-0688) and hexagonal In_2O_3 (JCPDS 22-0336). No other peaks were distinctly detected, indicating that the obtained samples are of high purity without impurity. The reflections for In_2O_3 in $In_2O_3/BiVO_4$ composites are intenser with increasing its amount.

Fig. 2a and b reveal that the morphology of the as-prepared BiVO₄ exhibits a truncated bipyramid shape with smooth clean surfaces and high exposed $\{010\}\{110\}$ facets. As shown in Fig. 2c and d, the loaded In_2O_3 nanoparticles are evenly dispersed on the BiVO₄ surfaces. But it should be pointed out that some of the loaded In_2O_3 nanoparticles are hard agglomerated and that the peripheral In_2O_3 particles have no contact with BiVO₄. After several attempts, it was found that the hard agglomeration was inevitable under our preparation conditions. The lattice fringes of BiVO₄ and In_2O_3 can be clearly observed form the HRTEM image of $In_2O_3/BiVO_4$ (Fig. 2e). As shown in Fig. 2d and e, BiVO₄ and its surrounding In_2O_3 particles showed an intimate contact, leading to the formation of the $In_2O_3/BiVO_4$ heterojunction (Fig. 2f).

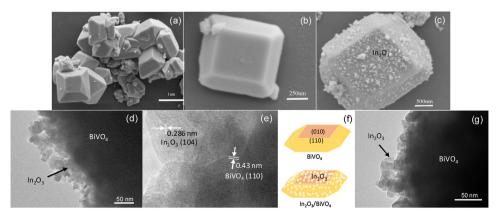


Fig. 2. FE-SEM images of BiVO₄ (a and b) and \ln_2O_3/BiVO_4 composite S3 (c), HRTEM images of \ln_2O_3/BiVO_4 composite (d and e), the illustrations of BiVO₄ and the \ln_2O_3/BiVO_4 heterojunction (f), and HRTEM image of \ln_2O_3/BiVO_4 composite after the photocatalytic reaction (g).

Download English Version:

https://daneshyari.com/en/article/5442210

Download Persian Version:

https://daneshyari.com/article/5442210

<u>Daneshyari.com</u>