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a b s t r a c t

We report a successful passive Q-switching of a Tm:YLF laser operating at l ¼ 1.9 mm, using a
Co2þ:AgCl0.5Br0.5 saturable absorber. Approximately 200-ns long, 150 mJ pulses were obtained. Increase in
pump energy resulted in repetitive pulsing, with a repetition rate approximately proportional to the
pump pulse energy. Room-temperature optical transmission saturation curves measured in ~1-mm thick
Co2þ:AgCl0.5Br0.5 plates yielded a ground state absorption cross section sgs ¼ ð7:8±0:5Þ � 10�18 cm2, and
an excited state absorption cross section ses ¼ ð3:3±0:3Þ � 10�18 cm2, at l ¼ 1.9 mm. The lifetime of the
A2(4F) second excited-state of the octahedral O symmetry was t* ¼ ð0:6±0:06Þ ns.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

In the past two decades, many types of passive laser Q-switch-
ing materials were developed, the most popular were based on
transition-metal cations like Cr4þ, Cr2þ, V3þ, or Co2þ as the active
dopant [1e7]. For some important infrared lasers in the 1.3e1.7 mm
range, especially for those exploiting the 3I13=2/4I15=2 emission of
Er3þ ions, passive Co2þ:Mg(Zn)Al2O4 Q-switches represent an
efficient solution [8e17]. Still, the Mg(Zn)Al2O4 Co2þ host produc-
tion, even in the sintered polycrystalline (ceramic) phase, requires
temperatures exceeding ~1500 �C [18]. Silver halide AgClxBr1�x
crystals with 0 < x < 1, on the other hand, melt between 432 and
455 �C. Their single-crystal growth from melt is thus rather easy.
Spectral applicability of Co2þ dopant ions for passive Q-switching
may shift by using different hosts. Particularly, A Broad absorption

bandwas observed in Co2þ-doped AgClxBr1�x crystals between ~1.5
and 2.3 mm [19], rendering this spectral region applicable for pas-
sive Q-switching. Furthermore, the crystals for all those composi-
tions are transparent between 0.4 and 30 mm, with a refractive
index of 2.0 < n < 2.2. These properties suggest their use in a variety
of applications in the said, exceptionally broad, spectral range.

In this work we investigate a Co2þ doped silver halide
AgCl0.5Br0.5 crystal as a passive Q-switch at the 1.885 mm wave-
length. We performed optical bleaching experiments at 1.885 mm,
and calculated various material parameters such as ground and
excited-state absorption cross-sections, dopant densities, damage
threshold, and the higher excited state lifetime. We demonstrate
with this crystal, for the first time to the best of our knowledge,
passive Q-switching inside a Tm:YLF laser oscillator [20] operating
at l ¼ 1.885 mm.

1.2. Spectroscopic overview

Basically, the AgCl0.5Br0.5 composition forms a disordered crys-
tal, related to the AgCl and AgBr parents. The latter each is face-
centered cubic, belonging to the #225, O5

hðF4=m32=cÞ space
* Corresponding author.

E-mail address: ishaaya@ee.bgu.ac.il (A.A. Ishaaya).

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier .com/locate/optmat

http://dx.doi.org/10.1016/j.optmat.2016.11.022
0925-3467/© 2016 Elsevier B.V. All rights reserved.

Optical Materials 64 (2017) 64e69

mailto:ishaaya@ee.bgu.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optmat.2016.11.022&domain=pdf
www.sciencedirect.com/science/journal/09253467
www.elsevier.com/locate/optmat
http://dx.doi.org/10.1016/j.optmat.2016.11.022
http://dx.doi.org/10.1016/j.optmat.2016.11.022
http://dx.doi.org/10.1016/j.optmat.2016.11.022


group. The (centered) unit cell contains 4 formula units. The Agþ

ions occupy the 4a Wyckoff site of an octahedral Oh symmetry; the
halogen singly negative ions occupy the 4b Wyckoff site of an
octahedral Oh symmetry. The lattice parameters are 5.55 and 5.77Å
[21] for AgCl and AgBr, respectively. The AgCl0.5Br0.5 crystal exhibits
similar features, except for disorder in the halogen sites, whichmay
occupy either a chlorine or a bromine ion at 50% probability. The
Agþ ion still maintains its octahedral coordination, yet at a reduced
symmetry; an O symmetrymay be considered a fair approximation.
When doped to form a Co2þ:AgCl0.5Br0.5 crystal, the Co2þ ions
replace two lattice Agþ ions, causing further distortion of the
occupying sites. Spectroscopic studies indicate [22,23], that the
majority of Co2þ ions are octahedrally coordinated, with six
halogen nearest-neighbors. A smaller portion are tetrahedrally
coordinated, with four halogen nearest neighbors. For spectro-
scopic analyses, those different sites may be approximated as
having O and Td symmetries, respectively. All optical transitions in
the near, and mid-IR, the region of interest in our present study,
relate to the crystal field splitting of the 4F state Term of the free
Co2þ ion. A variety of optical properties were measured in
Co2þ:AgCl0.5Br0.5 between 300 and 20 K. A Broad absorption band
was observed between ~1.5 and 2.3 mm [19], in addition to three
bands around 0.64, 0.9, and 4.25 mm. The emission lifetime of the
~4.4 mm-centered band under excitation at 1.92 mm, varied between
1.73 ms at low temperatures, and 5 ms at room temperature [24].

A Co2þ:AgCl0.5Br0.5 energy level diagram relevant to the said
prospected application is provided in Fig. 1. The two types of
possible cobalt centers, octahedral and tetrahedral [19,22e24], are
addressed. In the octahedral O crystal field symmetry, the 4F state
splits into T1ð4FÞ þ T2ð4FÞ þ A2ð4FÞ in an increasing energy order.
Each state is further split by the smaller spin-orbit interaction,

according to 4F9=2 þ 4F7=2 þ 4F5=2 þ 4F3=2 in an increasing energy

order. T1ð4F9=2Þ is thus the ground state.
The spin-orbit split states energies follow the well-known

relation

GSLJ ¼ ½xSL½JðJ þ 1Þ � LðLþ 1Þ � SðSþ 1Þ�; (1)

where GSLJ is the level splitting, xSL is the spin-orbit coupling co-
efficient, and L, S, and J are the orbital, spin, and total angular
momentum numbers, respectively. The value xSLy� 100cm�1 was
assumed schematically for both O and Td sites. In The O symmetry,
T1ð4FÞ/T2ð4FÞ and T2ð4FÞ/A2ð4FÞ transitions are electric-dipole
allowed. Such transitions are marked in the figure by solid ar-
rows. The T1ð4FÞ/A2ð4FÞ transitions are electric-dipole forbidden;
they are thus very weak, and marked by dashed arrows. The
T1ð4FÞ/T2ð4FÞ transitions relate to the present, saturable ground-
state absorption study at 1.9 mm; their cross section is thus marked
sgs, and the excited T2ð4FÞ-state lifetime is marked t. The
T2ð4FÞ/A2ð4FÞ transitions relate to the present, excited-state ab-
sorption study at 1.9 mm; their cross section is thus marked ses, and
the higher excited A2ð4FÞ state lifetime is marked t*. It is assumed
(and proven in our present study) that t*« t.

In the tetrahedral Td crystal field symmetry, the 4F state splits
into A1ð4FÞ þ T1ð4FÞ þ T2ð4FÞ in an increasing energy order. Each
state is further split by the smaller spin-orbit interaction, same as in
the octahedral site. A1ð4F9=2Þ is thus the ground state, assumed to

coincide with the O-symmetry one. The A1ð4FÞ/T2ð4FÞ and
T2ð4FÞ4T1ð4FÞ transitions are electric-dipole allowed. Such tran-
sitions aremarked in the figure by solid arrows. The A1ð4FÞ4T1ð4FÞ
transitions are electric-dipole forbidden; they are thus very weak,
and marked by dashed arrows. The T2ð4FÞ/T1ð4FÞ decay transi-
tions relate to the Co2þ measured fluorescence at ~4.4 mm [19]. The
absorption spectra in the vicinity of 1.9 mm involve excitation of
Co2þ in both octahedral and tetrahedral sites; energy exchanges
between the excited two type sites are also likely to occur.

Notably, Washimiya [22] erroneously presented a different
assignment for the tetrahedral Td crystal-field splitting of Co2þ ions
4F-states in KCl crystal (specifically, A2ð4FÞ þ T2ð4FÞ þ T1ð4FÞ in an
increasing energy order). Their optical transitions assignments are
correspondingly erroneous. This error has permeated into virtually
all later publications by others, such as in Refs. [17,23e26].

1.3. Experimental setup and procedure

Bridgman-Stockbarger grown Co2þ:AgCl0.5Br0.5 crystalline cy-
lindrical boules [24], ~7-cm long and approximately 8e10 mm in
diameter, were used as starting material. Discs, ~1e3.5 mm thick,
were cut and optically polished. To prevent bending during cutting,
the sample was side mounted to an aluminium rod using bee wax.
Cutting was done under a minimal load at a moderate speed of
250 rpm using a tabletop precision cut-off machine (Minitom by
Struers ApS). The 0.15 mm thick cutting wheel was a low-
concentration diamond-metal bonded (Struers ApS). Dual side
plane grinding to the desired thickness was done sequentially from
coarse (SiC grinding paper, 220 grit) to fine (SiC grinding paper,
4000 grit) using a grinding and polishing machine (LaboSystem
Struers ApS) under a 10 N load at 150 rpm. Residual surface damage
was removed by additional polishing by 3 and 1 mm diamond
powder suspensions (DiaPro Dac 3-mm/1-mm by Struers ApS) on a
20-cm aluminium wheel topped with a woven acetate fabric (MD-
Dac, Struers ApS) at 5 N load. Final polishing was done by a 0.25 mm
diamond powder suspension using a woven silk fabric (MD-Dur,
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Fig. 1. Co2þ:AgCl0.5Br0.5 energy level diagram relevant for its function as a saturable
absorber. The peak absorption wavelength of the T1ð4FÞ/T2ð4FÞ transition in the
octahedral site, and A1ð4FÞ/T2ð4FÞ transition in the tetrahedral site, is around
l ¼ 1.9 mm [23]. For details, see text.
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