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a b s t r a c t

In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal
made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence,
where its nth-stage Sn is given by the inflation rule Sn ¼ Sn�1Sn�2Sn�1 for n � 3, with initial conditions
S1 ¼ A and S2 ¼ B. The metamaterial is characterized by a frequency dependent electric permittivity εðuÞ
and magnetic permeability mðuÞ. The polariton dispersion relation is obtained analytically by employing a
theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then
discussed, stressing the distribution of the allowed photonic band widths for high generations of the
Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending
on the common in-plane wavevector kx.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of quasicrystals in 1982 by Shechtman et al. [1]
has started a new field in condensed matter physics. They define
a new class of neither amorphous nor crystalline structure
exhibiting non translational symmetry. Besides, they can be
generated by a substitution rule based on two or more building
blocks with long-range order [2e4], exhibiting properties of self-
similarity in their spectra with an undoubtedly fractal behavior,
with a distinct appearance for each chain [5], even for different
excitations [6e8]. As a consequence, many theoretical and
experimental works have been reported on this subject (for re-
views see Refs. [9e11]).

Quasicrystals are a special class of deterministic aperiodic
structures [12]. A recent precise definition of quasicrystals with
dimensionality d (d ¼ 1, 2 or 3), is that in addition to their
possible generation by a substitution process, they can also be
formed from a projection of an appropriate periodic structure in
a higher dimensional space mD, where m>d [13]. In contrast,
structures that are part of other deterministic structures
cannot be built in such way, as by instance quasicrystalline
structures of Fibonacci type and their generalizations [14e16],

as well as systems that obey the Thue-Morse, double-period and
Rudin-Shapiro sequences [17,18]. In this context, the one-
dimensional Octonacci structure can be considered as a quasi-
crystal because it can be formed from a projection of a 2D pe-
riodic lattice in a straight line with an irrational slope
s ¼ 1þ

ffiffiffi
2

p
[19].

On the other hand, the idea of complex materials in which both
the electrical permittivity and the magnetic permeability possess
negative real values at certain frequencies has received consider-
able attention nowadays due to their potential technological
application. This ideawas born in 1967when Veselago theoretically
investigated the electromagnetic plane-wave propagation in a
material whose permittivity and permeability were assumed to be
simultaneous negative [20]. In his theoretical study, Velesago
showed that for a monochromatic electromagnetic uniform plane
wave in such a medium, the direction of the Poynting vector is
antiparallel to the direction of the phase velocity, contrary to the
electromagnetic plane-wave propagation in conventional simple
media. This theoretical complex medium was setting up by Smith,
Pendry, and collaborators [21e24]. They have constructed a com-
posite medium that exhibit the anomalous refraction in microwave
regime, demonstrating experimentally the negative refraction
studied by Veselago. Many research groups all over the world are
now studying their various aspects looking for technological ap-
plications [25].

Bulk and surface plasmon-polariton have been* Corresponding author.
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experimentally and theoretically studied for many years due to
their possible use in novel photonic and sensing applications (for
a review see Ref. [26]). In quasiperiodic structures they exhibit
collective properties due to the appearance of long range cor-
relations, which are reflected in their fractal spectra, defining a
novel description of disorder [27]. The study of the fractal
spectra generated by these quasiperiodic structure can help us to
understand the global order and the rules that these systems
obey at high generation order. By instance, their spectra in
Fibonacci quasiperiodic photonic crystal composed by meta-
materials, were already the subject of intense research works
[28e30].

The aim of this work is twofold: first, we want to extend our
previous work on the transmission spectra in Octonacci photonic
quasicrystals [31] by considering the photonic band gap spectra
arising from the propagation of a plasmon-polariton excitation in
these quasiperiodic multilayer structure. Second, we intend to
present a quantitative analysis of the results, mainly those related
to the allowed photonic bandwidths, looking for information about
their localization and power laws.

This paper is organized as follows: in Section 2, we present the
theoretical model based on the transfer matrix approach to set up
analitically the plasmon-polariton dispersion relation (bulk and
surface modes). The discussion of this dispersion relation for the
Octonacci quasiperiodic structure is then depicted in Section 3,
together with their localization profiles through the scaling law of
their photonic bandwidth spectra. The conclusions of this work are
presented in Section 4.

2. Theoretical model

The Octonacci sequence, also known as Pell sequence, can be
built from the Ammann-Beenker tiling, which is an octagonal tiling
obtained by using a strip projection method (see Fig. 1.18 in
Ref. [32]). The name Octonacci comes from Octo for orthogonal and
nacci from the Fibonacci sequence, the oldest example of a quasi-
periodic chain. Its quasi-periodicity can be of the type so-called
substitutional sequences, and is characterized by the dense pure
point nature of its Fourier spectrum, being described in terms of a
series of generations that obey peculiar recursion relations. It can
also be defined by the growth, by juxtaposition, of two building
blocks A (here considered to be SiO2) and B (a metamaterial), where
the nth-stage of the multilayer Sn is given iteratively by the rule
[33]:

Sn ¼ Sn�1Sn�2Sn�1; (1)

for n � 3, with S1 ¼ A and S2 ¼ B. The number of the building blocks
increases according to the Pell number Pn ¼ 2Pn�1 þ Pn�2, for n � 3,
with P1 ¼ P2 ¼ 1. The number of building blocks B divided by the
number of building blocks A, in the limit n/∞, is s ¼ 1þ

ffiffiffi
2

p
.

Another way to obtain this sequence is by using the following
inflation rule: A/ B, B/ BAB. Note that this sequence is classified
as Pisot-Vijayaraghavan (PV), when we take the negative eigen-
value of the substitution matrix, i e., s� ¼ 1�

ffiffiffi
2

p
[34,35].

Let us consider first the periodic photonic crystal case. The bulk
plasmon-polariton dispersion relation is obtained by solving the
electromagnetic wave equation for a p-polarized electromagnetic
mode, within the layers A and B of the nth unit cell of the layered
photonic crystal (see Fig. 1), yielding:

cosðQLÞ ¼ ð1=2ÞTrðTÞ; (2)

where Tr(T) means the trace of a transfer matrix T. The details of

this calculation can be found elsewhere [27]. Using these equations,
we can show that for the periodic case this dispersion relation is a
function of sines and cosines of the wavevectors kzA, kzB and Q, the
Bloch wavevector, and the size L ¼ aþ b of the unit cell.

To set up the dispersion relation for the surface plasmon-
polariton modes, we consider the multilayers structure truncated
at z ¼ 0, with the region z<0 filled by a transparent medium C,
whose dielectric constant is denoted by εC. This semi-infinite
structure does not present translational symmetry in the z-direc-
tion and therefore the Bloch theorem is not valid in this case. Its
implicit dispersion relation is [27].

T11 þ T12l ¼ T22 þ T21l
�1

; (3)

were Tij (i; j ¼ 1;2) are the elements of the transfermatrix T, and l is
a surface dependent parameter given by

l ¼ ðxA þ xCÞ=ðxA � xCÞ; (4)

xj ¼ εj
�
kzj ; (5)

with j ¼ C or A. Now we extend this method to obtain the plasmon
polariton dispersion relation for the Octonacci photonic structure
by determining the appropriated transfer matrices. It is easy to
prove, by induction method, that the transfer matrices for any
Octonacci n-generation (with n � 3) is given by

TSn ¼ TSn�1
TSn�2

TSn�1
; (6)

with the initial conditions

TS1 ¼ N�1
A MA; TS2 ¼ N�1

B MB: (7)

The matrices MJ and NJ (J ¼ A or B) are defined elsewhere [27].
Therefore, from the knowledge of the transfer matrices TS1 and TS2 ,
we can determine the transfer matrix of any other Octonacci
generation.

3. Numerical results

Now we present some numerical results related to the photonic
band gap spectra due to the plasmon-polariton excitation (bulk and
surface modes) that can propagate in the Octonacci structure
considered here. Medium B (A) is a metamaterial (SiO2) with a
frequency dependent (constant) electric permittivity εBðuÞ
(εA ¼ 12:3) and magnetic permeability mBðuÞ (mA ¼ 1) in the

Fig. 1. Schematic representation of a periodic photonic structure ABAB/. Here a and b
are the thicknesses of the layers A and B, respectively.
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