ARTICLE IN PRESS

Optical Materials xxx (2016) 1-6

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

The nature of Mn⁴⁺ luminescence in the orthorhombic perovskite, GdAlO₃

A.M. Srivastava a, *, M.G. Brik b, c, d

- ^a GE Global Research, One Research Circle, Niskayuna, New York 12309, USA
- ^b College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
- ^c Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
- ^d Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, Czestochowa, PL-42200 Poland

ARTICLE INFO

Article history: Received 13 June 2016 Accepted 20 June 2016 Available online xxx

Keywords: Mn⁴⁺ GdAlO₃ Perovskite Crystal-field splitting Covalence Luminescence

ABSTRACT

In this paper we report on the spectroscopic properties of Mn^{4+} ($3d^3$) ion in the orthorhombic perovskite, $GdAlO_3$ and calculate the energy levels using the exchange charge model of crystal-field theory. The calculated Mn^{4+} energy levels are in good agreement with the experimental data. The results of our calculations yield the crystal-field splitting and Racah parameters of $Dq = 2083 \text{ cm}^{-1}$, $B = 780 \text{ cm}^{-1}$ and $C = 2864 \text{ cm}^{-1}$, with C/B = 3.67. The emission spectrum is composed of the zero phonon line ($^2E_g \rightarrow ^4A_{2g}$ transition) with dominating intensity and its vibrational sidebands. We have also calculated Mulliken atomic charges and bond populations for three isostructural perovskites ($GdAlO_3$, $LaGaO_3$ and $CaZrO_3$) to seek correlation between the energy position of the Mn^{4+} 2E level and the covalence of Mn^{4+} — O^{2-} chemical bonding.

 $\ensuremath{\text{@}}$ 2016 Published by Elsevier B.V.

1. Introduction

Professor Georges Boulon has contributed to the fundamental understanding of the optical properties of transition metals ions such as Mn⁴⁺ and Cr³⁺ in solids [1–6]. In the spirit of his contributions we wish to report on the spectroscopic properties of the Mn⁴⁺ ion in the orthorhombic perovskite GdAlO₃. This investigation is a part of our effort to provide an understanding of the factors which govern two properties of interest: (1) the variations in the crystal-field splitting (10Dq), and (2) the electron-electron (Racah) parameters, B and C [7–19]. The Racah parameters are responsible for the energy of the Mn⁴⁺ emission transition (2 Eg \rightarrow 4 A2g). Cataloging these properties and conducting a cross-cutting comparative study sheds light on "structure-property" relationships that can guide the search for new commercially important phosphors.

In this work we examine the room temperature luminescence of Mn⁴⁺ in the perovskite GdAlO₃, calculate the Mn⁴⁺ energy level structure by the exchange charge model of crystal-field theory and compare the obtained theoretical results with the experimental data. A comparative study of the optical properties of Mn⁴⁺ in the

 $\label{eq:commutation} \textit{E-mail addresses: } srivastava@ge.com (A.M. Srivastava), mikhail.brik@ut.ee (M.G. Brik).$

http://dx.doi.org/10.1016/j.optmat.2016.06.032 0925-3467/© 2016 Published by Elsevier B.V. orthorhombic perovskites $LaGaO_3$, $CaZrO_3$, $YAIO_3$ and the rhombohedral perovskite $LaAIO_3$ is also presented.

2. Experimental

The syntheses were carried out by the conventional solid-state reaction technique. The materials were formulated as $Gd_{1-x}Ca_xAl_{1-x}Mn_xO_3$. The substitution of Ca^{2+} for Gd^{3+} assists in stabilizing the Mn^{4+} on the Al^{3+} sites of the $GdAlO_3$ lattice (due to need for charge compensation). The required amounts of high purity starting materials Gd_2O_3 , $CaCO_3$, Al_2O_3 and Mn_2O_3 are blended and heated twice at $1300\,^{\circ}C$ for a period of $10\,h$ in a covered alumina crucible. The samples were homogenized between the two heating steps.

The X-ray diffraction pattern indicates the formation of $GdAlO_3$ phase (Fig. 1). Luminescence measurements were performed as previously described [7]. The spectra were corrected for the wavelength dependent variations in the Xe-lamp intensity and the photomultiplier response.

3. Results and discussions

3.1. Crystal structure of GdAlO₃

In the cubic ABO₃ perovskites, the A cations are present in a

Please cite this article in press as: A.M. Srivastava, M.G. Brik, The nature of Mn⁴⁺ luminescence in the orthorhombic perovskite, GdAlO₃, Optical Materials (2016), http://dx.doi.org/10.1016/j.optmat.2016.06.032

^{*} Corresponding author.

A.M. Srivastava, M.G. Brik / Optical Materials xxx (2016) 1-6

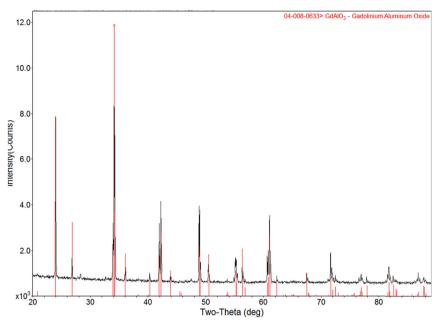


Fig. 1. The powder X-ray diffraction pattern of $Gd_{0.999}Ca_{0.001}Al_{0.999}Mn_{0.001}O_3$.

twelve fold coordination and the B cations are in an octahedral (six fold) coordination. In the GdAlO₃ perovskite, a cooperative rotation of the octahedral groups along the cubic [110] axis yields the orthorhombic GdFeO₃ (space group Pbnm) structural type in which the Gd³⁺ ions are coordinated to eight O²⁻ ions [20]. The perovskite GdAlO₃ crystallizes with space group Pbnm (#62) and lattice constants a=5.3049 Å, b=7.4485 Å and c=5.2537 Å [21]. Fig. 2 illustrates one unit cell of GdAlO₃. The Gd³⁺ cations are in eight-fold oxygen coordination. The Al³⁺ cations are in six-fold oxygen coordination with average Al³⁺—O²⁻ bond distance of 1.906 Å (Fig. 3);

the ${\rm AlO_6}$ octahedral clusters are aligned along the c crystallographic axis.

3.2. Method of calculations

Although the details of calculation are available elsewhere we think it benefits the readers to summarize the computational method in this section. The energy levels of impurity ions with an unfilled d-shell in a crystal field of arbitrary symmetry are calculated by diagonalizing the following CF Hamiltonian [22]:

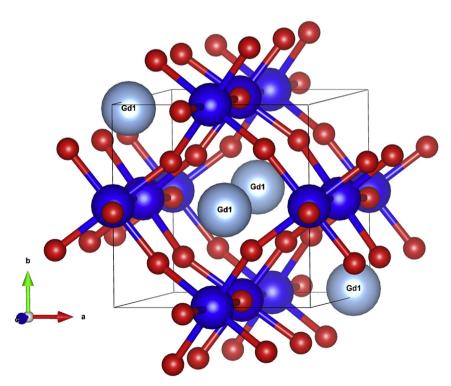


Fig. 2. One unit cell of GdAlO₃. The Al³⁺ ions are located inside the octahedra formed by the oxygen ions. Drawn with VESTA [17].

Please cite this article in press as: A.M. Srivastava, M.G. Brik, The nature of Mn⁴⁺ luminescence in the orthorhombic perovskite, GdAlO₃, Optical Materials (2016), http://dx.doi.org/10.1016/j.optmat.2016.06.032

Download English Version:

https://daneshyari.com/en/article/5442935

Download Persian Version:

https://daneshyari.com/article/5442935

<u>Daneshyari.com</u>