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a b s t r a c t

We demonstrate that a single plane wave pulls a chiral nanoparticle toward the light source. The
nanoparticle exhibits optical gain in a particular wavelength region. The equivalence of the generalized
and alternative expressions of the Lorentz force density relating to bound charges for chiral media is
numerically validated. By considering the two-dimensional electromagnetic problem of incident plane
waves normally impinged on active chiral cylinders, it is shown that the gradient force is mainly
contributed by the bound electric and magnetic current densities of the cross-polarized waves. We also
investigate how the medium parameters and impedance mismatch can be used to manipulate the
pulling or pushing Lorentz forces between two chiral cylinders. This finding may provide a recipe to
understand the light interaction with multiple chiral nanoparticles of arbitrary shapes (in general) with
the aid of the numerical approach. It could be a promising avenue in controlling the optical microma-
nipulation for chiral nanoparticles with mirroring asymmetry.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the first experimental observation of the trapping of
dielectric particles by a single beam [1] was demonstrated, new
opportunities have been provided to study light harvesting objects
[2e4] in biology, medicine, and engineering. The research on op-
tical manipulation of particles mostly focuses on the configuration
of optical fields [5e7], and medium structures [8e11], for instance,
nonmagnetic anisotropic beads [8], graded-index media [9], and
gain medium structures [10,11]. The light amplification of general
active materials [10,11] or chiral materials with an active imaginary
part of the permittivity or permeabilitymay cause a nanoscale body
to be pulled toward a light source.

The common active media include liquids, gases, solids, and
semiconductors [10e17] etc. Some of the active media are non-
chiral [10,11], others are chiral [12e17]. Large chiral multi-
functionalized molecules [12,13], chiral metamaterials [14,15]
with giant optical rotation, chiral boron nitride nanotubes [16],
and green fluorescent proteins in cells [17] may be potential
active chiral materials. The optical forces generated by chiral

materials are mostly concentrated on passive chiral spheres using
the Mie theory [18] or designing structured beams [5,6], such as
nondiffractive Bessel beams [6]. Two counterpropagating inco-
herent plane wave sources are needed to induce a pulling force
on a chiral structure made up of 25 metallic spheres [5]. The
analytical Mie series method is not appropriate for the compu-
tation of non-spherical particles. Furthermore, the Mie series
solution is based on the Bohren's decomposition without
considering the real-time magneto-electric coupling properties of
chiral media, that is, electromagnetic fields in an uncoupled
effective chiral medium [18] are decomposed into a set of
uncoupled waves in two equivalent isotropic media. Electro-
magnetic waves and energy in chiral media with chiral nihility
(i.e., ε ¼ m ¼ 0, and ks0) are analyzed [19]. In fact, the dispersive
nature of the electric permittivity, magnetic permeability, and
chilarity [20] must be considered for modeling the interplay of
waves and chiral media.

Compared with analytical approaches [18,21], the Finite-
Difference Time-Domain (FDTD) method [22e30] can record
fields for various shapes of chiral materials at any specified
location in space as a function of time. Compared with other
numerical approaches, the FDTD method can simulate three types
of chiral media [12e19,30e33], namely natural chiral materials
like organic molecules [30], man-made chiral materials composed
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of rosettes or helices [14e16], and pure chiral media equivalent to
dispersive media [18]. The BI-FDTD method [25] is based on a
wavefield decomposition like the Mie series solution. Neverthe-
less, the constitutive relations for the effective chiral media can
be directly implemented into some dispersive FDTD methods
[20]. The Lorentz force on dielectric or magnetic dispersive
achiral media has been given [26,27]. The radiation pressure of
chiral slabs [29] without considering induced bound charges
under a plane wave normal incidence is discussed. Compared
with the one dimensional (1D) case, the distribution of spatially
electromagnetic waves at oblique incidence and the Lorentz force
density of chiral media with complicated shapes can be simulated
with two dimensional (2D) computational methods. Moreover,
the disputable equivalence of (P$V)E and (�V$P)E [34] for chiral
media needs to be further confirmed.

In this paper, the issue of manipulating the optically force via the
chirality of active chiral media is considered by studying the two-
dimensional electromagnetic problem of plane waves propaga-
tion in chiral cylinders. First, the auxiliary differential equation
(ADE) FDTD method, as well as the generalized and alternative
time-averaged Lorentz force density for chiral media are expanded
and discretized in 2D Yee cells. Then, the validation of algorithms is
performed by comparing computed data [27] with the numerical
results of the ADE-FDTD method in the case of a dielectric cylinder
under a plane wave incidence. The co- and cross-polarized field
distributions in and around chiral media are obtained by using the
FDTD method, which allows us to access the electromagnetic force
acting on chiral objects. Finally, the possible factors affecting the
positive or negative Lorentz force densities exerted on single or two
chiral cylindrical rods are analyzed.

2. Theory

2.1. Constitutive relations

The magneto-electric coupling constitutive relations for bi-
isotropic media in the frequency domain can be described as [31].

DðuÞ ¼ εðuÞEþ ½cðuÞ � jkðuÞ� ffiffiffiffiffiffiffiffiffiffi
m0ε0

p
H;

BðuÞ ¼ mðuÞHþ ½cðuÞ þ jkðuÞ� ffiffiffiffiffiffiffiffiffiffi
m0ε0

p E; (1)

where ε(u), m(u), k(u), and c(u) are frequency-dependent permit-
tivity, permeability, chirality, and Tellegen parameters, respectively.
A pure chiral medium, i.e. c(u) ¼ 0 is discussed in this paper.

The effective and macroscopic medium parameters [12e16] of
natural and artificial chiral media are determined by the material,
physical geometric construction, and incident angle etc. The Lor-
entzian models are generally used to characterize the permittivity
and permeability, and a Condon model is used to represent the
chirality of chiral media, that is,
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In Eq. (2), εs, ms, ε∞, and m∞ are the permittivity and permeability at
zero and infinite frequencies, respectively. ue, uh, and uk are reso-
nance angular frequencies. xe, xh, and xk represent damping factors,
and tk represents a characteristic time constant measuring the
magnitude of the optical rotation. The chirality of the chiral
nanoparticles could be affected by the geometric dimensions, such
as helix radius, width, thickness, contour length, and pitch angle.
The chirality can be obtained with the circular dichroism

spectroscopy of biological substances [2]. The medium parameters
studied in this paper are not representative of a specific system of
molecules or cells. The Lorentz force density and the ADE-FDTD
method proposed in this paper can be implemented to any sys-
tem that is equivalent to a dispersive chiral medium.

The wave vectors of two eigenwaves in chiral media are

k± ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrεr±kr

p
; (3)

where k0 is the free-space wavenumber. εr, mr, and kr are the relative
permittivity, permeability, and chirality, respectively. For an active
chiral medium, at least one wave vector of the eigenwaves has a
positive imaginary part; thus, one of the propagating modes will
grow exponentially.

If the loss (gain) is included, conditions of the imaginary parts of
permittivity, permeability, and chirality for a passive chiral medium
are [22].

Im½ε�<0; Im½m�<0; Im2ðkÞ< ½ImðεÞImðmÞ=ðε0m0Þ�: (4)

Otherwise, the chiral medium becomes an active one [11,22,31].
If the medium parameters do not satisfy any of the conditions in Eq.
(4), the chiral medium is active.

2.2. 2D ADE-FDTD method

By introducing the transform relation between frequency
domain and time domain (ju/v/vt), the electromagnetic field and
current equations used to model waves propagation in chiral media
can be got

V�H ¼ ε∞ε0vE=vt þ Jþ Kc;
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Then, the field and current equations containing constitutive
relations for chiral media can be deduced and numerically solved
by means of the ADE-FDTD method. For the two dimensional case,
the physical quantities are independent of z axis i.e. v/vz ¼ 0. For
simplicity, only the field components of the Transverse Magnetic
(TM) waves are given in this paper. Thus, the spatial and time
iterative equations for the source-free chiral media are in the
following form,

Enþ1
z ði; jÞ ¼ Enz ði; jÞ �

Dt
ε∞ε0

�
J
nþ1

2
z ði; jÞ þ Kn

cz

�
iþ 1

2
; jþ 1

2

��

þ Dt
ε∞ε0

�

2
66666664

Hnþ1
2

y

�
iþ 1

2
; j
�
� Hnþ1

2
y

�
i� 1

2
; j
�

Dx

�
Hnþ1

2
x

�
i; jþ 1

2

�
� Hnþ1

2
x

�
i; j� 1

2

�

Dy

3
77777775
;

J
nþ3

2
z ði; jÞ ¼ axJ

nþ1
2

z ði; jÞ þ bxJ
n�1

2
z ði; jÞ

þ gx

h
Enþ1
z ði; jÞ � En�1

z ði; jÞ
i
;

M. Wang et al. / Optical Materials 62 (2016) 411e418412



Download English Version:

https://daneshyari.com/en/article/5443058

Download Persian Version:

https://daneshyari.com/article/5443058

Daneshyari.com

https://daneshyari.com/en/article/5443058
https://daneshyari.com/article/5443058
https://daneshyari.com

