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A B S T R A C T

A plastically dilatational material model is proposed that enables to simulate the mechanical response of
non-compact geometries (containing free surfaces) by means of established spectral methods without any
particular adaptations, i.e. in combination with arbitrary constitutive laws describing the remainder of the
simulated geometry and under mixed boundary conditions. The versatility of this material model and more
accurate representation of empty space in comparison to an isotropic elastic model employing low stiffness
is demonstrated for the cases of void growth under biaxial extension and grain-scale deformation behavior
of an oligocrystalline dogbone-shaped aluminum sample under uniaxial tension.

© 2017 Elsevier Ltd. All rights reserved.

Classically, the crystal plasticity finite element method (CPFEM)
has been the vehicle of choice to simulate and understand the
mechanical behavior of engineering components with structural
dimensions approaching the grain size of the intrinsic microstruc-
ture. Examples of such oligocrystalline mechanics can be found in the
fields of lead-free solder joints, thin wires, cardiovascular stents, and
mesostructured materials such as foams or photonic crystals. The
spatial resolutions achievable by CPFEM within reasonable computa-
tion times are limited by the substantial numerical effort inherent in
the FEM strategy to solve the underlying partial differential equation
system. Spectral methods have emerged as an efficient [1–3] substi-
tute for CPFEM [4–7], but only recently were improved sufficiently
to overcome their unfavorable convergence when large gradients
in mechanical properties are present [8,9]. This enhanced capabil-
ity allows the mechanics of porous structures to be solved using
spectral methods by replacing the open space (or voids) with soft
material [10] in the simulated periodic domain. Examples of such
simulations have been demonstrated in recent works [11–14]. The
methodology used in these works tightly links the behavior of the
spectral solution algorithm to the specifics of the constitutive behav-
ior of each material point, i.e., making a binary distinction between
how to address void and filled points. Furthermore, any nucleation of
additional voids not yet present in the initial geometry will require
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to propagate the information about such a change in local con-
stitutive behavior to the spectral solution algorithm. Such a rigid
approach is akin to element elimination in FEM simulations of crack
propagation, where a particular constitutive response, i.e. loss of
stiffness, is treated through ad hoc modification of the geometry
instead of properly at the constitutive level, as achieved by, for
instance, cohesive zone elements. Following this spirit of keeping any
boundary value problem solver as general as possible, i.e., indepen-
dent of the constitutive material behavior that is simulated, voids
should only distinguish themselves through their constitutive model,
which, classically, has been vanishingly small elastic stiffness. Here,
to describe void regions, a plastically dilatational material is pro-
posed that enables simulations of non-compact geometries such as
open or closed-cell foams, or other geometries with free surfaces,
by means of established spectral methods without any particular
adaptations.

A plastic plate with a circular inclusion under biaxial extension
and a dogbone-shaped tensile sample of oligocrystalline aluminum
serve to compare this dilatational material model to a low-stiffness
isotropically elastic model of all void regions.

Constitutive model for void like regions. A finite strain framework
incorporating two intermediate configurations is adopted, similar to
the work of Tjahjanto et al. [15] and following Shanthraj et al. [16].
The total deformation gradient F = FeFiFp at each material point
is multiplicatively decomposed into isochoric, and lattice preserv-
ing, plastic deformation Fp, non-isochoric, but stress-free, dilatation
Fi, and elastic deformation Fe, consecutively mapping the reference
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configuration into the “lattice” configuration (Fp), then into the
“intermediate” configuration (Fi), and finally into the deformed one
(Fe). Only the elastic lattice distortion gives rise to stress, which takes
the form Sp = C : 1

2 FT
i

(
FT

eFe − I
)

Fi in the lattice configuration and
Si = FiSpFT

i /det(Fi) in the intermediate one, with C being the fourth-
order elastic stiffness tensor (in the lattice configuration). The stress
Si drives the dilatational velocity gradient Li(Si,g) = ḞiF

−1
i , while Sp

drives the plastic velocity gradient Lp(Sp,g) = ḞpF−1
p and the evolu-

tion ġ of internal state variables. The total velocity gradient follows
as L = Le + FeLiF

−1
e + FeFiLpF−1

i F−1
e .

To capture the mechanical response of a void, an isotropic plastic-
ity model that combines an isochoric response due to the deviatoric
stress with a dilatational response due to the hydrostatic pressure
(mean stress) is formulated. The kinetics and internal state parame-
terization of the model are inspired by the phenomenological crystal
plasticity model introduced by Peirce et al. [17] that postulates a
power-law relation and an internal deformation resistance, termed
g.

Thus, in an isotropic setting, the strain rate 4̇p connected to
isochoric deformation is given as

4̇p = 4̇0
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, (1)

with J2 as the second invariant of S′
p (deviatoric second PIOLA–

KIRCHHOFF stress), stress exponent n, Taylor factor M, and ‖ •‖ the
FROBENIUS norm. The associated plastic velocity gradient Lp, acting
in the lattice configuration, is then formulated as

Lp = 4̇p
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To mimic the dilatational response of a void region, a similar
constitutive law but for the dilatational expansion rate 4̇i and the
dilatational velocity gradient Li is formulated in the intermediate
configuration

Li = 4̇i
I

‖ I ‖ = 4̇0

(
p

Mg

)n

I (3)

where p is the hydrostatic pressure calculated from Si, and I is the
2nd order identity tensor. The evolution of deformation resistance
follows

ġ = M4̇ph0
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where a, 4̇0, and h0 are adjustable parameters.
Solution to mechanical boundary value problem.To solve the

mechanical boundary value problem of static equilibrium, the finite
strain spectral method outlined in [3,9] and implemented as part of
the Düsseldorf Advanced Material Simulation Kit (DAMASK) is used.
The constitutive law described above was integrated into the flex-
ible material point model offered by DAMASK. Since the solution
fields resulting from the spectral method are a superposition of a
homogeneous and a fluctuating part, where the mean value of the
latter vanishes over the domain, any boundary conditions can only
prescribe the average (homogeneous) fields.

Comparison between a dilatational and soft-elastic void. Using a
plastically isotropic plate with a circular void at its center as an
exemplary case, the response of the dilatational material model out-
lined above is contrasted to an alternative description of the void as a
(relatively) soft and purely elastic inclusion. Table 1 lists the material
parameters used to model the plastic plate as well as the elastic and

Table 1
Material parameters; elastic constants Cij , reference strain rate 4̇0, stress exponent n,
initial and saturation flowstress g0 and g∞ , hardening parameters h0 and a, and Taylor
factor M = 3.

Plate Void

Elastic Dilatational

C11 100 0.1 10 GPa
C12 60 0 0 GPa
C44 30 0.05 5 GPa

2C44
C11−C12

1.5 1 1
4̇0 10−3 10−3 s−1

n 20 20
g0 30 0.3 MPa
g∞ 60 0.6 MPa
a 2 2
h0 80 1 MPa

the dilatational version of the void. The largest elastic stiffness con-
stant C11 of the dilatational and elastic version of the void is scaled
down, respectively, one and three orders of magnitude relative to
the plate surrounding it, with C12 and C44 calculated such that elastic
isotropy and vanishing Poisson ratio for the void is ensured in both
versions. The flow stress of the dilatational version of the void is set
to be two orders of magnitude lower than that of the plate material.
The chosen values reflect a compromise between vanishing stress in
void regions and the associated computational cost, as detailed in
the supplementary material. A 512 × 512 × 1 regular grid is used to
discretize the fully periodic geometry, resulting in about 2100 grid
points within the void taking up an area fraction of 0.8%. The plate
is subjected to biaxial tensile elongation along the x and y direction
(see top row of Fig. 1), which is enforced by fixing eight of the com-
ponents of the average deformation gradient rate and requiring the
remaining complementary first PIOLA-KIRCHHOFF stress component
Pzz to vanish, i.e.
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⎤
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where ‘*’ indicates that stress (or deformation) needs to be iteratively
adjusted since deformation (or stress) is prescribed. In the simula-
tions, the conditions of Eq. (5) are maintained for 400 increments of
1 s each (such that the final 〈F〉xx = 〈F〉yy = 1.4).

The elastic and dilatational version of the void are contrasted in
the left and right column of Fig. 1, showing the simulation results at
the final simulation step in terms of deformed geometry, determi-
nant of deformation gradients (i.e. relative change in volume), hydro-
static stress, and VON MISES stress. The two cases reveal markedly
different results. For the same final planar geometry (second row),
the dilatational void expands to about six times its original diam-
eter, while the purely elastically modeled void only about doubles
its diameter. As the volume of the plastic plate is preserved, its final
thickness is about 10% smaller when containing the elastically mod-
eled void. The volumetric expansion of the void is fully carried by
det(Fe) for the elastic version, whereas the values of det(Fe) are
minute compared to det(Fi) in the dilatational void version (third
and fourth row). Since only the hydrostatic elastic strain connected
to det(Fe), but not det(Fi), is giving rise to a hydrostatic stress shyd =
K4hyd, with K = 0.43GPa, the shyd inside the elastic void is much
larger than inside the dilatational void and even exceeds the hydro-
static stress experienced by the surrounding plastic plate (row five).
To the contrary, the dilatational void does not exhibit any apprecia-
ble hydrostatic stress as well as deviatoric stress (last row) since it
is plastically growing in volume at a flowstress much lower than the
flowstress of the plastic plate.
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