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Porosity dependence of powder compaction constitutive parameters:
Determination based on spark plasma sintering tests
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Themodeling of powder compaction process, such as spark plasma sintering (SPS), requires the determination of
the visco-plastic deformation behavior of the particle material including the viscosity moduli. The establishment
of these parameters usually entails a long and difficult experimental campaign which in particular involves sev-
eral hot isostatic pressing tests. Amore straightforwardmethod based on the coupled sinter-forging anddie com-
paction tests, which can be easily carried out in a regular SPS device, is presented. Compared to classical creep
mechanism studies, this comprehensive experimental approach can reveal the in situ porous structure morphol-
ogy influence on the sintering process.
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The simulation of the powder compaction in advanced sintering
techniques, such as spark plasma sintering, is a helpful research tool en-
abling the prediction and optimization of: the densification nonunifor-
mity [1], the tooling resistance to the stress solicitation [2], and the
elaboration of complex shapes [3]. For the SPS technology, these me-
chanical simulations are often coupled with the Joule heatingmodeling
[4–10] in a multiphysics approach rendering a comprehensive predic-
tion of this process' electro-thermal-mechanical phenomena [11–13].
As described by numerous authors [5,14–17], the main challenge relat-
ed to the Joule heatingmodeling is to identify the non-ideal electric and
thermal contacts in the SPS tooling-specimen setup as the dominant pa-
rameters controlling the temperature field distribution. Concerning the
aspects of themechanical modeling, the great challenge is to identify all
the model constitutive parameters. The powder compaction model for
both pressure and pressureless sintering techniques can be described
by the general continuum theory of sintering [18]. For pressure assisted
techniques such as SPS this approach can be reduced to the description
of a visco-plastic porous body (a continuummade of a dense phase and
porosity) behavior [3,19,20]. The dense phase nonlinear viscous behav-
ior is oftenmodeled via a power law creep. The stress/strain behavior of
the porous medium is also described by the porosity-dependent shear

and bulk moduli. The experimental determination of these moduli is
usually rather cumbersome, therefore, as a rule, the values of these pa-
rameters are approximated theoretically to the detriment of the overall
modeling accuracy [18].

Numerous theoretical derivations of the shear and bulk moduli con-
sider linear viscous [21,22] or power law creep [23–25] materials with
an idealized porous body “skeleton”. As reported by Wolff et al. [26]
these theoretical moduli are often characterized by a good functional
trend, but the difference of a considerable magnitude is observed be-
tween the theoretical and experimentally determined moduli values
[19,27–29]. The consequence of this discrepancy is then a possible the-
oretical overestimation of the equivalent creep parameters. Failure in
the identification of the creep mechanism has been reported [30]
when using traditional isothermal linear regression methods [3,
31–33]. The isothermal regime is very sensible and the somewhat inac-
curate estimation of the shear and bulk moduli can generate a signifi-
cant error in the sintering mechanism evaluation [30]. A more precise
experimental determination of the shear and bulk moduli is therefore
of high interest for the sintering modeling. However, the traditional
methods of the determination of these moduli are very time consuming
and require, inter alia, several instrumented hot isostatic pressing (HIP)
tests [19,29], a rather expensive instrumentation to setup. An alterna-
tive solution using coupled sinter-forging and die compaction tests is
described in this paper. This combination, inspired from refs. [27,28],
can be easily adapted to a regular SPS machine such as the one utilized
in the studies [34,35] of the consolidation of Ti-6Al-4V and TiAl
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powders, respectively. It should be noted that for small grain size ce-
ramic powders the in situ creep tests [34–40] are more accurate since
the SPS processing is able to better preserve fine microstructures
[41–45].

To apply this method, the continuum theory of sintering needs to be
reduced to its general analytical form for both the sinter-forging and die
compaction tests. Considering the minimum operational pressure of
40 MPa and the 5 μm average particle size, the sintering stress can be
neglected and the general formulation of the continuum theory of
sintering gives the stress tensor σ the following expression [18]:

σ ¼ σ eq

_εeq
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1
3
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where _ε is the strain rate tensor, i is the identity tensor, φ and ψ the
shear and bulk moduli to be determined, _εeq and σeq the equivalent
strain rate and stress defined by [46]:
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with θ being the porosity and the strain rate and stress tensor invariants
given by:
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The porosity is determined locally by the mass conservation equa-
tion:

_θ
1−θ

¼ _εx þ _εy þ _εz: ð7Þ

The equivalent strain rate and stress of the dense phase are related to
each other via a creep power law:

_εeq ¼ Aσn
eq ¼ A0 exp

−Q
RT
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where for pure nickel [47,48]: A0=2.06E−8 MPa−ns−1, Q = 171.1 kJ
mol−1 and n = 7.

The die compaction case (such as in traditional SPS configuration) is
characterized by a unique displacement along z-axis (assuming com-
paction direction along z-axis) which gives the external strain rate ten-
sor the following analytical approximation:
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0 0 0
0 0 _εz
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Replacing (9) in (2,4,6), one obtains the simplifications:
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Which, using (1) and (8), renders the general analytical form of the
die compaction loading mode:
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The sinter-forging case is characterized by a unique loading along z-
axis (assuming loading direction along z-axis) which gives the external
stress tensor the following analytical approximation:
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0 0 σ z
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To determine the sinter-forging constitutive equation we need to
determine first the strain rate tensor expression that depends on the
stress tensor components.

Starting from (1) and considering the relationship P _εeq ¼ σ eqψtrð _ε Þ
for the stress and strain rate tensor invariants [46] one can determine:
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Then, considering the stress tensor deviator expression s ¼ σ −I1i=
3, we finally obtain the general form:
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If we consider the simplification of (12) in (3,5,6) we obtain for
sinter-forging:
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Using (14), (8) and (15), the final constitutive equation for sinter-
forging is then:
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Combining (11) and (16) it is possible to experimentally determine
parameters φ and ψ at fixed porosity and temperature values. This can
be achieved by solving the system of the two equations below where
the first member is unknown (φ and ψ), and the second member can
be accessed experimentally by sinter-forging and die compaction tests
(θj _εzj � jσ zj are experimentally determined; A, n are known by creep
tests.)
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Considering the sinter-forging case, it is obvious that the behavior of
a loose powder specimen at a constant applied stress |σz | can provoke
the specimen's collapse and, in turn, a very high strain rate j _εzj. Conse-
quently, in Eq. (16), the summation 2

3φ þ 1
9ψ tends to infinity, and both

φ and ψ tend to zero at a critical porosity θc close to the porosity of a
loose powder. Another fact is that the equivalent stress (3) tends to
the von Mises stress expression at full specimen's density when φ and
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