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properties of high-entropy alloys have not been studied in depth so far. The current study focuses on the low-
cycle fatigue regime. Cyclic tests were conducted and the microstructure evolution was studied post-mortem.

Despite deformation-induced martensitic transformation during cycling at given plastic strain amplitudes, in-
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tense strain hardening in the cyclic stress-strain response is not observed. This behavior is attributed to the planar
nature of slip and partial reversibility of deformation.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

The development of new alloys combining high strength with excel-
lent ductility has stimulated numerous research activities in recent
years, mostly focusing on steels. High-Mn steels have led to consider-
able advances in recent years [1-5]. Through compositional tuning,
the stacking fault energy (SFE) can be tailored for two deformation ef-
fects, namely, twinning induced plasticity (TWIP) and transformation
induced plasticity (TRIP). Depending on the actual value of the SFE,
being affected by chemical composition and temperature, either me-
chanical twinning or martensitic transformation are prevalent besides
planar dislocation slip [2,3,5,6-9]. Dislocation-twin and dislocation-
phase boundary interactions lead to high strain hardening reserves
and delayed necking under monotonic loading [1-5,10-13].

Recently, interest has increased in similar strain hardening effects
observed in high-entropy alloys (HEAs). Primarily, these alloys, also re-
ferred to as multi-component alloys or compositionally complex alloys,
are composed by at least five elements in equiatomic composition [14].
This concept is different from earlier alloying philosophies which typi-
cally use only one dominant base element [1-13]. Due to this principal
difference in the alloy design approach also non-equiatomic alloys
consisting of only four main elements are in the literature often referred
to as HEA such as the alloy studied here [15].

Mainly two groups of HEAs have been characterized quite compre-
hensively, viz. refractory HEAs and HEAs composed by group-IV transi-
tion elements [16,17]. Within the latter group the well-known single
phase Cantor-alloy, i.e. Fe-Mn-Ni-Co-Cr, has been studied in some
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detail, particularly focusing on the deformation behavior and fracture
toughness at cryogenic temperatures [18-20]. Deformation in the Fe-
Mn-Ni-Co-Cr system is characterized by dislocation slip and twinning,
the latter becoming more prevalent in the cryogenic regime [18,20].
Thus, some similarities between the behavior of high-Mn TWIP steels
and the Fe-Mn-Ni-Co-Cr HEA are obvious [21-23]. The material studied
here is a Fe5oMn30Co10Cryg alloy, characterized by a two phase micro-
structure obtained after thermo-mechanical processing including
quenching from final annealing temperature [15]. Upon tensile
straining the metastable face-centered cubic (fcc) phase shows a mar-
tensitic transformation to the e-hexagonal closed packed (hcp) mar-
tensite phase. Following monotonic deformation to a local engineering
strain of about 65%, the fraction of martensite increases to about 85%.
Concomitantly, intense strain hardening is observed. Detailed analysis
of the microstructure revealed stacking faults, dislocations patterns,
mechanical twins and e-martensite [15].

These results document the rapid progress in alloy development re-
garding better understanding and tuning of the monotonic deformation
behavior of HEAs. However, when in service, engineering alloys are usu-
ally not loaded monotonously but in a non-monotonic fashion. Yet, cur-
rently no data reporting on the cyclic behavior and concurrent
microstructure evolution in HEAs in the low-cycle fatigue (LCF) regime
are available. Only three studies reporting on Alg sCoCrCuFeNi, tested
under four-point bending fatigue loading [24,25] and Al ;CoCrFeNi,
also tested under bending loading [26], provide first insights into this
important topic. All these studies focus on the fatigue strength of the al-
loys and, thus, on the high-cycle fatigue (HCF) regime, as is also empha-
sized in current reviews reporting on HEAs [17,27,28]. Generally, in LCF
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and HCF regimes different loading conditions are considered, i.e. strain
and stress controlled testing, respectively, and, thus, microstructure
evolution is significantly different.

From high-Mn steels it is known that microstructure evolution
under either monotonic or cyclic loading can differ significantly from
each other [29-32]. Some of the current authors studied microstructure
evolution in various fatigue regimes ranging from LCF to fracture me-
chanical testing [30,31]. Interestingly, the TWIP steels probed in these
studies, i.e. thermo-mechanically processed micro-alloyed Fe-Mn22-
C0.6, did not reveal twinning under cyclic loading [31]. Only re-arrange-
ment of dislocation structures was observed under cyclic loading at
room temperature (RT) [31]. Thus, counter-intuitively, high accumulat-
ed strains led to cyclic softening instead of cyclic hardening as would
have been expected from the monotonic deformation behavior. Only
monotonic pre-deformation, prior to cyclic loading, was able to stabilize
fatigue response due to increase in twin density and, thus, intensified
twin-dislocation interactions [31].

The current study aims at providing first insights into the micro-
structure evolution of dual-phase HEAs under cyclic loading. Testing at
RT in the LCF regime is accompanied by microstructure characterization
employing X-ray diffraction and electron microscopy. The results reveal
an unexpected microstructure upon testing: despite significant evolu-
tion of strain induced martensite, hardly any associated strain harden-
ing is observed during cycling up to about 90,000 cycles at low strain
amplitude of Ag/2 = 0.23% and 10,000 cycles at high strain amplitude
of Ag/2 = 0.6%, i.e. accumulated plastic strains of well above 1000% in
all cyclic tests conducted. The e-martensite fraction of about 95 vol% de-
veloping upon fatigue at the within this study studied highest cyclic
strain amplitude (0.6%) even exceeds values found upon monotonic
testing. The results are discussed based on the underlying deformation
characteristics.

The initial ingot was cast in a vacuum induction furnace using pure
metals and subsequently thermo-mechanically processed [15]. Two dif-
ferent conditions are probed here. A fine grained dual-phase condition
has been obtained by annealing at 900 °C followed by water quenching.
The second one, referred to as coarse grained condition has been subse-
quently heat treated at 850 °C for 20 min followed by furnace cooling.
The coarse grained condition shows hardly any hcp phase in the initial
state, i.e. well below 1 vol% according to EBSD and non-detectable in
the XRD spectrum (cf. Figs. 1 and 3). Initial martensite fraction for the
fine grained condition is about 3 vol% according to EBSD analysis. Sam-
ples with gauge section dimensions of 8 mm x 3 mm x 1.5 mm were cut
by electro-discharge machining (EDM). In order to remove the affected
surface layer all samples were subsequently mechanically ground and
polished down to 5 pm grit size. Furthermore, samples were vibration
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polished using conventional oxide polishing suspension (OPS). Me-
chanical tests were conducted using a MTS load-rig in fully reversed
push-pull loading in strain control. For determination of strains a
miniature extensometer featuring a 3 mm gauge length was directly at-
tached to the specimen. Nominal strain rate in all tests was 6 x 10> s~ 1.
For phase analysis an X-Ray diffractometer (XRD) equipped with a Cu
Ko source operated at 40 kV was used. Microstructure analysis includ-
ing electron channeling contrast imaging (ECCI) was done using a
high-resolution scanning electron microscope (SEM) at acceleration
voltage of 30 kV. The SEM employed is equipped with an electron back-
scatter diffraction (EBSD) unit and a backscattered electron (BSE)
detector.

Fig. 1 shows initial microstructures and the cyclic stress responses of
the FesoMn3gC01¢Cryg alloy in both conditions in the LCF regime. Most
pronounced evolution of microstructure is expected in the LCF regime.
Thus, first fatigue tests in the dual-phase TRIP-HEA were conducted
under strain controlled conditions at low to relatively high strains. Cur-
rently, no results regarding HCF performance of the TRIP-HEA are avail-
able, however, will be provided in future studies, amongst others
focusing on the role of plastic strain amplitude, strain rate and testing
frequency, respectively. Strain amplitudes in current work ranged
from Ag/2 = 0.23% to Ae/2 = 0.6%. In order to prevent buckling of the
miniature samples the load was increased stepwise during the very
first cycles and the final strain amplitude was reached after 50 to 75 cy-
cles depending on the strain amplitude. Thus, the initial cycles are not
shown in Fig. 1 for the sake of clarity. The fine grained and the coarse
grained TRIP-HEA conditions are characterized by an almost stable
stress plateau throughout the tests. Minor strain hardening is only ob-
served for relatively high strain amplitudes. For the strain amplitudes
of Ag/2 = 0.23% and Ag/2 = 0.28% even slight softening is observed
in the coarse grained TRIP-HEA (Fig. 1b). As can be seen in Fig. 1a, the
fine grained TRIP-HEA is characterized by stable response at the small
strain amplitudes (upon initial transient behavior, which cannot be
evaluated due to the initial minor loops conducted for avoiding buck-
ling), while for Ag/2 = 0.4% and Ag/2 = 0.6% slight hardening sets in.
Stress amplitudes at a given strain amplitude are higher for the fine
grained TRIP-HEA, which is due to the smaller initial grain size. In all cy-
clic tests for the fine grained and coarse grained conditions the accumu-
lated plastic strain was well above 1000%. The absence of pronounced
strain hardening upon cyclic loading as compared to the case of mono-
tonic testing up to local engineering strain of about 65%, where intense
strain hardening is observed [15], is striking and will be discussed
below. Most importantly, despite the pronounced martensitic transfor-
mation found, intense dislocation-phase boundary interactions seem
not to be present. From numerous studies focusing on a huge variety
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Fig. 1. Cyclic stress response of (a) fine grained (about 5 pm average grain size) and (b) coarse grained (about 10 pm average grain size) TRIP-HEAs tested under various strain amplitudes
atroom temperature and constant strain rate. The EBSD phase maps highlight differences in the initial microstructural conditions (red: y-phase, green: e-phase). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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