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Gradient of free volume distribution in metallic glasses is omnipresent either naturally or artificially in synthesis
and application. But how the spatial inhomogeneity affects mechanical properties remains poorly understood.
Here we probe this issue using finite element modeling. We find that the strength and toughness improves
with increasing gradient; and the larger the gradient, the more effective. But the plasticity is marginally enhanced

or even decreases. Too high the gradient value leads to brittle fracture caused by abrupt release of the large stress
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coefficient.

concentrated at the gradient region. The effects are represented in their relations with the gradient energy
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Inhomogeneity is undesirable in many materials for its contribution
to local stress concentration that eventually leads to fracture and failure.
But in metallic glasses (MGs), it is the quantity of choice in tailoring me-
chanical properties. In crystalline materials, chemical composition vari-
ation, second phase with different crystal structures, and defect density
and microstructure are the common examples of inhomogeneity and
can be varied to alter properties. In MGs there are fewer choices in intro-
ducing “heterogeneity”. But there is an internal state variable, free
volume (FV) that can be varied more readily [1-5]. This unique repre-
sentation of inhomogeneity in MG is omnipresent either naturally or ar-
tificially in synthesis and applications, for example, during rapid cooling
of glass forming liquid in copper mould, [6] in surface treatment either
using pulse laser, ion irradiation, or mechanical deformation such as
shot peening or grinding, [7-12] and in the heavy mechanical deforma-
tion such as high pressure torsion [13,14], rolling, [15-17] and wire
drawing [18-20]. These FVs are inhomogeneous in spatial distribution,
resulting in gradient between different FV regions.

To reduce the undesired brittleness in monolithic MGs, inclusions
with various structures, composition and properties are introduced
[21]. They could be effective in reducing the brittleness by blocking
shear bands [22]. FV gradients are introduced into MGs either in the in-
terface regions between the inclusion and the matrix or inside the inclu-
sion itself [23]. Although a large body of knowledge is available for the
roles played by the average FV density in mechanical properties in MG
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composites, the FV gradient effect remains largely unknown quantita-
tively. In this work we attempt to address this problem using numerical
modeling on the continuum scale.

FV gradient is defined as the variation of the FV density vf(?) in

space, va. It appears whenever vris not distributed homogeneously.
The occurrence of the FV gradient indicates change in the local mechan-
ical energy - more work is needed if one deforms a region with lower FV

— 2 —
and vice versa. Usually the scalar quantity| Vv¢| out of the vector Vvyis
considered as the gradient contribution to the mechanical energy. The
same argument has been applied in phase transitions: [24-28] To
form a new phase, the interface containing the gradient interface (GI)
between the new and old phase must be created, which demands addi-
tional energy. For mechanical deformation of MGs, the same concept
should apply: In addition to the abovementioned example of deforming
existing high and low FV regions with a GI, deformation also generates
high FV density in certain regions such as surface and around inclusions,
resulting in new GIs. To extend the high FV density region further re-
quires more external applied stress. Thus one expects that the larger
or stepper the FV gradient, the higher mechanical work is required, or
the higher the strength and toughness of the sample could be. Here
we examine whether or not this thinking is pertinent.

The interface region contains varying degrees of FV gradients de-
pending on processing and application conditions. In MGs containing
crystalline inclusions, the FV gradient at the crystal-glass interface is
sharp, while a shallow gradient should exist at the surface region in con-
tact with the copper mould in rapidly cooled samples; and shot peened
or pulse laser treated surface has relatively diffusive FV gradient
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interfaces. The key question is how these varying degrees of FV gradi-
ents contribute to the overall mechanical properties. To address this
question, we use the finite element modeling (FEM) in conjunction
with the constitutive model that explicitly incorporates the FV variation
in MGs [29-31].

The gradient is introduced through the initial FV distribution in the
sample. Presently, we only deal with the gradient in one dimension
across the two dimensional plane in the sample under plane strain con-
dition. Operationally, we assign FV values in the mesh points according
to certain spatial distributions; and the FV value itself is drawn from two
types of statistical distributions. One is from uniform Gaussian distribu-
tion and another non-uniform bimodal distribution [32], which results
in four cases: (a) spatially homogeneous (without gradient) and statis-
tically uniform, (b) spatially homogeneous but statistically non-uni-
form, (c) spatially inhomogeneous and statistically uniform, and (d)
spatially inhomogeneous and statistically non-uniform distributions.
Case (a) and (b) have been studied previously and the results show
that the statistically different but spatially homogeneous distributions
of FVs alone can dramatically changes mechanical properties in samples
without FV gradient [32]. To systematically examine the FV gradient
contributions to mechanical properties, here we investigate the other
two cases, (¢) and (d). As shown below, (a) and (b) are the extreme
cases of (c) and (d).

In the insets of Fig. 1(a)-(c), we show three typical cases of the initial
FV gradient: (A) (Fig. 1(a)) and (B) (Fig. 1(b)) have higher FV at the
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sides and lower in the center with gradual variation in between, and
(C) (Fig. 1(c)) has a sharp interface between the high and low FV re-
gions. The FV values in case (A) are drawn from the uniform distribu-
tion, (B) a uniform random distribution, and (C) a non-uniform
bimodal distribution. All statistical distributions are kept at the same
mean FV value of 0.05. For each case, we also have a series cases for in-
termediate FV gradients (see the insets in Fig. 1(a)-(c)) with decreasing
values. The extreme cases are these without gradient, that is, the uni-
form FV spatial distribution.

With the given initial FV distributions, by solving the equations of FV
change and the strain and stress under a given external load, we can ob-
tain the mechanical properties of the samples containing various
gradients. In particular, the material tangent D%, = 0 Ac;/0Agy is imple-
mented in ABAQUS finite element software through a UMAT subroutine.
The material parameters of bulk MG Zr4;25Ti13.75Ni1oCu;2 5Beys 5 are
used. The samples have 7500 regular mesh elements and the periodic
boundary conditions. Since our focus is on the gradient, the sample is
setup such that the high and low FV regions have the same volume
fraction. Plane strain tension load are applied to the samples along
the interface direction with the effective strain date of 0.1/s. Because ten-
sion measures ductility truthfully and the sample with the periodic
boundary condition in FEM does not break if a local shear band passes
through, which is not the case in experiment, we chose to use tension
in our modeling. For more technical details, the reader is referred to
Ref. 29-32.
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Fig. 1. The stress-strain relations for samples with different FV distributions from (a) a homogeneous Gaussian-like statistical distribution described by a beta distribution with the
transformation relation through a beta function, beta(50,50)*0.04 + 0,03, (b) a uniform random statistical distribution described by beta(1,1)*0.04 + 0.03, and (c) an inhomogeneous
bimodal statistical distribution described by beta(0.1,0.1)*0.04 + 0,03. The statistical distributions are shown in the lower inset. The upper left inset shows the different intermediate
initial spatial FV distributions across the sample with different FV gradients. The upper right inset shows the intial FV distribution and the FV density profile. The warmer the color, the
high FV density; and the line is the mean FV profile. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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