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A B S T R A C T

A new approach to predict athermal martensite formation in metals is presented. It is based on computing
the driving force of the transformation including a strain energy term induced by atomic shear displace-
ments and energy terms due to substitutional and interstitial lattice distortions. The model is applied to
prescribe the martensite and austenite start temperatures in Fe-, Ti- and Co-based alloys with no adjustable
parameters. Expressions for Ms variations with composition are derived for multicomponent systems. The
transformation temperature hysteresis is predicted in Co alloys showing that this approximation can be
used to design alloys with the shape memory effect.

© 2017 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Martensitic transformations have been studied extensively due
to their importance in applications for high-strength, shape-memory
effects or superelastic properties. These are diffusionless first order
solid-state transformations, which nucleate from a parent phase,
commonly referred to as austenite. Martensite nucleates at a criti-
cal temperature Ms (martensite-start) when the driving force for its
nucleation is reached. Additional undercooling is required for the
transformation to continue and reach completion at a temperature
Mf (martensite-finish). The reverse transition occurs upon heating
the martensite to transform back to austenite; the temperatures at
which the transformation begins and finish are austenite start (As)
and finish (Af), respectively. Although there are considerable stud-
ies in different alloying systems showing how martensite formation
changes with composition [1–4], there is virtually no theoretical
approximation able to predict the conditions for its occurrence with-
out introducing fitting parameters or remaining valid in different
phase transitions.

The objective of this work is to introduce a new approach to pre-
dict Ms in systems undergoing the phase transitions: face-centred
cubic (FCC)⇐⇒body-centred cubic (BCC), FCC⇐⇒hexagonal closed
packed (HCP) and BCC⇒HCP. The approach is based on determin-
ing the driving force for athermal martensite formation including
energy terms of the transformation strains and lattice distortions by
substitutional and interstitial atoms. The model has no adjustable
parameters and it is able to predict Ms and As in Fe-, Ti-based alloys,
as well as the hysteresis cycle (Ms, Mf, As, Af) in Co-based alloys.

E-mail address: eg375@cam.ac.uk (E. Galindo-Nava).

Martensite forms by the coordinated movement of atoms result-
ing in homogeneous shearing of the austenite and forming a new
crystal structure without variations in chemical composition. The lat-
tice correspondence between the austenite and martensite phases
are nearly parallel to the most densely packed planes and their
corresponding directions. This leads to the orientation relation-
ships between the FCC, BCC, and HCP phase transitions to be1:
{111}FCC||{110}BCC||{0001}HCP and 〈110〉FCC||〈111〉BCC||〈112̄0〉HCP.

The phenomenological theory of martensite crystallography dic-
tates that the transformation strain cT consists of two components;
a (Bain) strain distorting homogeneously the parent structure, and
a lattice invariant strain d aiding in producing the correct shape of
the martensitic structure. For the FCC⇒BCC transition the transfor-
mation strain is computed by rotating the FCC unit cell, expanding
two principal axes and compressing the remaining axis to cor-
respond with the BCC unit cell [8]. Additional shearing of d =
|√2ac−√

3aa′ |
ac

along 〈1̄10〉FCC is needed to achieve the correct shape.
This is illustrated in Fig. 1 (a), showing atoms in (111)FCC||(110)BCC

(red) shuffle by dac√
2

[1̄10]FCC (orange arrows) to reach the correct BCC
shape (green). The principal strains to compute cT are [8]: g1 =
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2
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2

)−aa′
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2
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2
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, g2 =
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1√
2
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)
and g3 =

1√
2

ac−aa′
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2

ac
. The trans-

formation strain is: cT =
√
g2

1 + g2
2 + g2

3. The principal strains of

1 These are idealised relations, however they have shown sufficient accuracy with
experiments when determining various crystallographic parameters [5–7].
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Fig. 1. Schematic representation of the atomic displacements in BCC⇐⇒FCC, FCC⇐⇒HCP and BCC⇐⇒HCP transitions and their orientation relationships. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.)

the BCC⇒FCC transition are computed by similar rotations and by
shearing daa′√

3
[11̄1]BCC the lattice, with d = |√2ac−√

3aa′ |
aa′ .

Burgers [9] followed a similar argument to compute cT in the
BCC⇒HCP transition. This is illustrated in Fig. 1 (b), where BCC
atoms shear d =

|√3ab−2aa |
ab

along 〈111〉BCC to achieve the correct

shape of the HCP lattice (blue atoms). The shifting of daa′√
3

[11̄1]BCC in
the BCC axes is included in the computation of the principal (Bain)
strains [10].

The FCC⇒HCP transformation strain is obtained by shearing
atoms d = 1

6 〈112̄〉 [11–14]. Two of the principal strains (g1 and
g2) are obtained by rotating and expanding [100]FCC and [010]FCC

in correspondence with [101̄0]HCP and [112̄0]HCP [14]. As for g3,
the [111]FCC axis is expanded by d to lie parallel to [0001]HCP, as
schematically shown in Fig. 1 (c) (orange arrows). This results in

its magnitude increasing to ac
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+
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6 and g3 is [14]: g3 =

2
3

√
19
6 ac−c4

2
3

√
19
6 ac

. The HCP⇒FCC transition has

been argued to occur by the reverse process with analogous principal
strains [13,14].

Table 1 shows the values of the principal strains and the result-
ing transformation strains. The lattice constants have been obtained
from Refs. [7,15-18]; these are for Fe ac = 0.357 nm and aa = 0.287
nm; for Ti, ab = 0.328 nm, aa = 0.295 nm and ca = 0.468 nm;
and for Co, ac = 0.35 nm, a4 = 0.25 nm and c4 = 0.406 nm.

The chemical driving force for athermal martensite, DGc⇒a′
,

is the difference of the Gibbs energy between the austenite and
the martensite. DGc⇒a′

has been the subject of extensive inves-
tigations in binary and multicomponent alloys combining the
CALPHAD (Calculation of phase diagrams) approach and experi-
mental data [21,23,24]; in this context, martensite is treated as
supersaturated ferrite in Fe [24], and supersaturated a in Ti and

Table 1
Transformation strain and DGT in different phase transitions.

Transition g1 g2 g3 cT |DGT| (J/mol) Exp (J/mol)

FCC⇒BCC
1√
2

ac (1+ d√
2

)−aa′
1√
2

ac (1+ d√
2

)

1√
2

ac (1− d√
2

)−aa′
1√
2

ac (1− d√
2

)

1√
2

ac−aa′
1√
2

ac
0.24 (Fe) 1255 1000–1250 [19–21]
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