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A B S T R A C T

This paper presents a general formulation for the effect of the solid solution hardening (SSH) in multicom-
ponent alloys. It bridges the existing approaches analyzing this hardening effect between binary alloys and
highly concentrated multicomponent systems. The model is validated with a comprehensive dataset of mea-
sured critical resolved shear stress, hardness and yield strength of binary and multicomponent systems from
the literature.

© 2016 Elsevier Ltd. All rights reserved.

High entropy alloys (HEAs) are one of the most proposing new
materials for key industrial applications. Especially where a com-
bination of properties such as microstructural stability, mechanical
properties at high temperature, corrosion, oxidation and/or radia-
tion resistance [1], is required. The number of possible compositional
combinations to test experimentally is immense, although just a
minor fraction will probably be a solid solution. This has stimulated
large efforts to develop models and parameters able analyze mil-
lions of compositions and prioritize which compositions could be a
HEA [2]. Among the minor fraction (still large in number) of alloys
being HEAs, certainly not all of them will have interesting indus-
trial properties. Nevertheless, the physical models able to predict
the properties of those alloys are still on development. The use of
existing models, valid for existing alloys where one of the elements
dominate over the others, can be used as a guide for modeling gen-
eralize highly concentrated multicomponent systems, such as the
HEAs, but they need to be adapted or extended due the cocktail effect
and the large lattice distortion in this alloys [3].

A first attempt to describe the solid solution hardening (SSH)
effect in multicomponent systems, one of the largest effect on yield
strength in HEAs, was done at Ref. [4]. In that work, a relative suc-
cess was achieved by using the approaches proposed by Fleischer

E-mail address: it247@cam.ac.uk.

and Labush for binary systems [5,6], and adapting the extension to
multicomponent alloys proposed at Ref. [7]. One of the key param-
eters in these models was the calculation of the unit cell parameter
of the alloy and its variation with composition. In that work [4], the
model for calculating the unit cell parameter proposed by Lubarda
for binary interactions was applied [8]. More recently, the use of
a matrix describing the lattice distortion, originally proposed for
binary systems for this purpose [9], was extended for multicom-
ponent alloys [10]. This matrix, and the methodology developed
at Ref. [10] is used here to replace the abovementioned Lubarda’s
approach for the unit cell parameter calculation, and allows the
computation of both the lattice parameter and its variation with
composition, as well as other important parameters related to the
crystal stability in HEAs [11]. This methodology is used in this work
to develop a model that generalizes the proposed approach [4] for
multicomponent alloys.

The SSH effect, in binary or multicomponent alloys, is due to
the variation in the lattice coordinates with respect to ideal posi-
tions induced by the presence different elements. In the original
works [5,6], this effect is accounted by the solute–solvent interac-
tion, while in the present work, it is based on the lattice distortion
due to the presence of different elements. While both philosophies
can be applied to dilute alloys, the proposed one here is intended
to describe the large complexity of interactions of multicomponent
alloys, but being also consistent with binary systems.
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The original formulation for binary systems [6] proposes that the
SSH effect Ds ss is:

Dsss = B x2/3 (1)

being x the solute content and B:

B = 3lZ
[
n(g′2 + a2d2)1/2

]4/3
, (2)

where l is the shear modulus of the alloy, Z is a constant and a is a
parameter that accounts for the difference in the interaction forces
between screw and edge dislocations and the solute atom, where it
is assumed that 3 < a < 16 for screw dislocations and a > 16 for
edge dislocations [12], n it is related to the activated slip systems in
different crystal structure, g′ and d are the elastic misfit and atomic
size misfit respectively, and the multiplier 3 stands for the Taylor fac-
tor [6]. For a general model, it is usually taken a = 16 [4] since it
accounts for a mixture of dislocations type in the material, and the
constant Z has been experimentally fitted to Z = 5 in this work. The
calculation of the shear modulus of the alloy is described in Ref. [11]
and it is based on the use of the elemental unit cell parameter and
elastic constants. Similarly, a simple mixing rule of the elemental
shear modulus with the corresponding atomic fraction [4] provides
a similar approximation to the shear modulus of the alloy. For sim-
plicity, each elemental shear modulus is taken for each element at
its respective crystal structure. Although the shear modulus changes
with crystal structure, it has been seen that variations in the range
of 2–5% for phase transitions can be expected [13], where the effect
of microstructure is ignored here since elastic properties have been
observed to mostly depend on composition [14]. Being both misfits
of similar magnitude and due to the large value of a, the parameter 4
can be approximated by 4 ≈ n a|d|, and then Eq. (2) is simplified to:

B = 3lZ(n a|d|)4/3, (3)

where, finally, the atomic size misfit d is defined as:

d =
da
dx

1
a

(4)

with a the unit cell parameter of the alloy.
This formulation was developed for a medium concentration of

solutes by Labush [6], experimentally validated for concentrations
mostly around 0–20 at.%, and extends the original formulation for
the hardening effect of dilute binary alloys [5]. In both approaches,
Eq. (4) stands for the local variation of the cell parameter by means
of the effect of isolated solutes. These solutes were assumed to not
interact to each other, which is not the case of highly concentrated
solid solutions. For a highly concentrate binary alloy with elements
type i and j, even if element i is dominant, the effect of atom of type
j (solute) in atom of type i (solvent) can be as large as its reciprocal,
the effect of atom i in atom of type j. A logical choice to account for
this effect is to adopt a matrix form of the solid solution hardening
effect Dsm

ss that generalizes Eq. (1) for low solute concentrations. If
x = xj is the concentration of the solute and xi = 1 − xj the solvent,
this has the form:

Dsm
ss = Bx2/3(1 − x)2/3 =

1
2

(
x2/3

i , x2/3
j

) (
0 B
B 0

) ⎛
⎝ x2/3

j

x2/3
j

⎞
⎠ . (5)

Indeed, for very low solute concentration Dsm
ss ≈ Dsss, since

(1 − x)2/3 ≈ 1, but it quickly differs from the original formulation
for concentration x still in the range of applicability of Labush’s
approach.

An alternative is to assume that the parameter B, which accounts
for the effect of i on j and vice versa, applies by the frequency of
possible i–j interactions, which is xixj, or x(1 − x) if using the orig-
inal formulation for binary systems. It is assumed that the i–i and
j–j interactions, with frequency of occurrence xixi and xjxj respec-
tively, does not affect the solid solution hardening effect, in concor-
dance with Labush’s approach. Then, the following formulation much
simpler is proposed:

Dsm
ss = 2Bx(1 − x) = (xi, xj)

(
0 B
B 0

) (
xj

xj

)
. (6)

The range of applicability of this formulation is intended for high
concentrations, but it needs to be consistent with the existing formu-
lation for dilute solid solutions. The performance of Eqs. (5) and (6)
to approximate Eq. (1) is depicted in Fig. 1 for the same value of B. It
can be observed in that figure that Eq. (5) is just valid for very diluted
concentrations, while Eq. (6) is more consistent with Eq. (1). It is also
based on a more convincing effect of element i on element j and vice
versa by means of the frequency of occurrence of their interaction.

In highly concentrated alloys, such as the HEAs, there is not a ref-
erence solvent element, since all elements are in similar content and
the concept of solvent and solute vanishes. The local variation of the
cell parameter in the crystal lattice, which is the responsible of the
hardening effect, remains and is due to the different local combina-
tions of elements in the crystal lattice. This effect is known as the
distortion in the lattice, and a formulation to describe it was pro-
posed at Ref. [10]. We will use the concept of the lattice distortion,
rather than the solute–solvent interaction, to explain the hardening
effect in highly concentrate alloys. Eq. (6) is convenient for this pur-
pose, since it does not distinguish between solute–solvent, but it can
be also applied to low concentrated alloys.

The approach to account for the lattice distortion is based on the
use of the interatomic spacing matrix S = {sij}, proposed initially by
Moreen [9], which accounts for the mean value of the distribution of
interatomic spacing distances, also called nearest neighbor distances,
between atoms of different species in the alloy. Each individual inter-
action distance between atoms of type i and j can fluctuate over
a range of values, depending on the combination of atoms and its
coordinates around i and j. The averaged value of all i–j distances is
captured by sij in matrix S. The matrix S is related to the mean inter-
atomic spacing of the alloy slat by the frequency of occurrence of each
i–j interaction. The contribution to the mean interatomic distance
across the lattice by i–j interactions is therefore sijxixj, where xi and xj

Fig. 1. Comparison of different solid solution hardening effect formulations for binary

systems by means of the solute content x and B = 3Zl
(

na
a

da
dx

)4/3
.
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