Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Microstructural evolution in a superelastic metastable beta-Ti alloy

James Coakley^{a, b,*}, Dieter Isheim^{a, c}, Anna Radecka^{d, e}, David Dye^d, Howard J. Stone^b, David N. Seidman^{a, c}

^aNorthwestern University, Department of Materials Science and Engineering, Evanston, IL60208-3108, USA

^bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, England, United Kingdom

^cNorthwestern University Center for Atom-Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208, USA

^dDepartment of Materials, Imperial College, South Kensington, London SW7 2AZ, England, United Kingdom

^eRolls Royce Plc, Elton Road, DerbyDE24 8BJ, England, United Kingdom

A R T I C L E I N F O

Article history: Received 26 August 2016 Received in revised form 26 September 2016 Accepted 27 September 2016 Available online xxxx

Keywords: Atom-probe tomography Martensitic phase transformation Precipitation Titanium alloys Ageing

ABSTRACT

The microstructural evolution of Ti-24Nb-4Zr-8Sn wt.% during low-temperature ageing is examined by atom-probe tomography (APT) and X-ray diffraction (XRD). This ageing is deleterious to the desirable mechanical properties, such as ultra-low elastic modulus and superelasticity. Initially, the cold-rolled alloy possesses a martensitic α'' -precipitate/ β -matrix microstructure. On ageing, Ti-rich/solute-lean precipitates grow in linear arrangements, which are likely associated with dislocations. Additionally, the composition and number density of Nb-rich domains (which are associated with superelasticity) are quantified for the first time. The domains are unstable, but decrease in number density during ageing, causing the deterioration in mechanical properties.

© 2016 Elsevier Ltd. All rights reserved.

Ti-24Nb-4Zr-8Sn wt.% (Ti-15Nb-3Zr-4Sn at.%), commonly referred to as Ti-2448, is a Gum-like [1] metastable β -Ti alloy being developed for biomedical applications. In its thermodynamically stable state this alloy consists of body-centered cubic (bcc) β and hexagonal closed-packed (hcp) α phases. However, on quenching from above the β -transus temperature, the β -structure is almost fully retained to room temperature along with straininduced phases, such as α'' , δ , and athermal ω [2–6]. Quenched Ti-2448 possesses a non-linear elastic response with an ultra-low elastic modulus and a hysteresis loop on loading-unloading (corresponding to energy absorption) [7] due to a stress-induced phase transformation [2].

To develop β -Ti alloys further and broaden their range of applications, it is necessary to relate instabilities in mechanical properties to mechanically and thermally induced microstructural evolution. In the present work atom-probe tomography (APT) and laboratory X-ray diffraction (XRD) were used to study Ti-2448 following coldrolling samples and ageing at 300 °C for 4 h and 8 h, respectively.

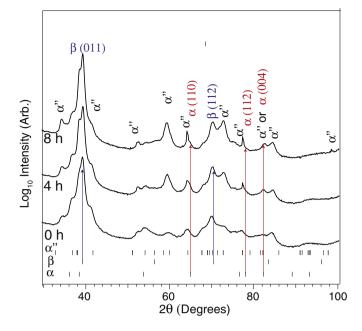
* Corresponding author at: Northwestern University, Department of Materials Science and Engineering, Evanston, IL60208-3108, USA.

E-mail address: james.coakley@northwestern.edu (J. Coakley).

XRD shows that the alloy initially possesses a martensitic- α'' precipitate/ β -matrix microstructure. On ageing, Ti-rich/solute-lean nanoprecipitates nucleate and form linear arrangements, which are likely associated with dislocations. These may be ω and/or α phase, which is difficult to distinguish in this case as metastable ω is a precursor to nanoscale α -formation [8]. Number density and composition of metastable Ti-lean, Nb-rich precipitates are quantified for the first time, and the number density decreases with ageing time. This is significant, as Nb-rich domains are the source of the desirable non-linear elastic properties [2], thus the cause of deterioration of the elastic properties with low temperature ageing [7] is now identified.

A plate of Ti-2448 was supplied from the Chinese Academy of Science Institute of Metal Research, Shenyang National Laboratory for Materials Science. The plate had been cold-rolled to 90% strain. Two samples were then heat-treated at (i) 300 °C/4 h and (ii) 300 °C/8 h, followed by air-cooling. Needle-shaped APT samples of the heattreated conditions were prepared using a standard lift-out method utilising a FEI Helios NanoLab 600 DualBeam focused ion-beam (FIB) microscope equipped with an Omniprobe micromanipulator. A detailed description of the FIB lift-out and tip sharpening procedure can be found in references [9–11].

Laboratory XRD measurements were performed on the Ti-2448 plate following cold-rolling, and the 300 °C/4 h and 300 °C/8 h heat-treatments. XRD was performed on a Rigaku Ultima IV using Cu-K $_{\alpha}$



Regular Article

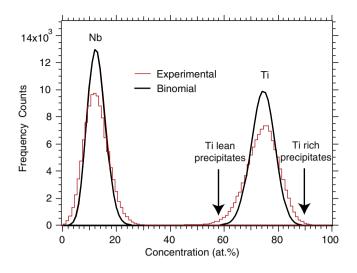
CrossMark

Scripta MATERIALIA

Fig. 1. Laboratory XRD profiles for Ti-2448 in the initial cold-rolled condition, and after 300 $^{\circ}$ C/4 h and 300 $^{\circ}$ C/8 h ageing.

X-ray radiation with a characteristic wavelength of 1.541 Å at 40 kV and 20 mA. Data were collected over a range of $30-100^{\circ}$ 2 θ . Phase identification was performed using the program CrystalDiffract.

APT experiments were performed in the laser mode using a Cameca LEAP 4000X Si equipped with a 355 nm UV picosecond laser at the Northwestern University NUCAPT core facility. The specimen stage temperature was 30 K and pulse energies of 20 pJ were used. Data reconstruction and analysis was performed using IVAS.


The X-ray diffraction patterns of cold-rolled and aged Ti-2448 samples are shown in Fig. 1. It is clear that the initial processing with cold-rolling has induced extensive α'' phase. The α'' peak positions were determined from Liu et al. [2]. Almost all the peaks of the other potential phases lie very close to α'' -reflections, so it is difficult to determine if other phases are contributing to the diffraction spectra. The highlighted peaks at 64.0°, 75.2° and 77.2° indicate that another phase *may* be present. These peaks grow in intensity and appear to correspond to α -reflections. Liu et al. [2] commented that compressive plastic strain (such as cold-rolling) induces ω formation in this alloy. Indeed, ω has been previously identified in Ti-2448 by TEM, following cold-rolling and also following low temperature ageing, despite not being observed by laboratory XRD [7].

The bulk needle compositions determined from APT are in good agreement with bulk compositions measured by ICP-OES and LECO analyses, Table 1. Inspection of the concentration frequency distribution functions shows that the experimental data for Ti and

Table 1

Nominal composition of Ti-2448 in at.% and composition measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and LECO gas analyses. The compositions measured by APT and the total number of million atoms used in the reconstructions of each APT measurement are listed.

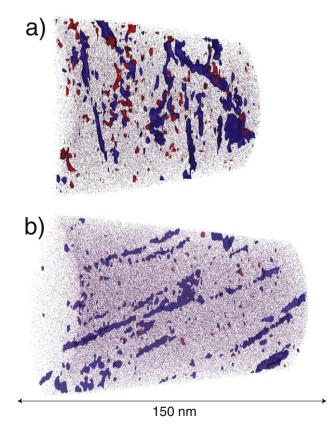

	Ti	Nb	Zr	Sn	0	Atoms (M)
Nominal composition	78.3	15.1	2.6	3.9	-	-
ICP-OES	80.4	13.3	2.5	3.5	0.3	-
APT 4 h	79.0	13.7	2.9	3.7	0.4	11
APT 8 h	80.0	12.7	2.8	3.8	0.3	28

Fig. 2. Ti and Nb concentration frequency distributions constructed with a block size of 100 atoms, for Ti-2448 with a 300 $^{\circ}$ C/4 h heat-treatment. The binomial distribution is shown for comparison.

Nb are broader than the binomial function, indicative of the presence of Ti-rich, Nb-lean regions and Ti-lean, Nb-rich regions, Fig. 2.

Ti and Nb isoconcentration surfaces were drawn with concentration values equaling the average of the far-field concentrations in the matrix and the concentrations in the precipitate core. The APT reconstructions of the 4 h and 8 h heat-treated sample are shown in Fig. 3. The Ti-rich phase is highlighted in blue, and the Nb-rich

Fig. 3. APT reconstructions of a Ti 85.5 at.% isoconcentration surface (blue) and Nb 22.8 at.% isoconcentration surface (red) for a) Ti-2448 + 300 °C/4 h, and b) Ti-2448 + 300 °C/8 h, with 25% of the Zr atoms displayed (purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/5443772

Download Persian Version:

https://daneshyari.com/article/5443772

Daneshyari.com