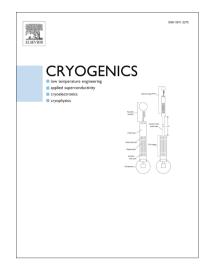
Accepted Manuscript

Research paper

Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

Huangjun Xie, Liu Yu, Rui Zhou, Limin Qiu, Xiaobin Zhang


PII: S0011-2275(17)30158-3

DOI: http://dx.doi.org/10.1016/j.cryogenics.2017.07.008

Reference: JCRY 2705

To appear in: Cryogenics

Received Date: 16 May 2017 Revised Date: 27 June 2017 Accepted Date: 18 July 2017

Please cite this article as: Xie, H., Yu, L., Zhou, R., Qiu, L., Zhang, X., Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography, *Cryogenics* (2017), doi: http://dx.doi.org/10.1016/j.cryogenics.2017.07.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Preliminary evaluation of cryogenic two-phase flow imaging using

electrical capacitance tomography

Institute of Refrigeration and Cryogenics, Zhejiang University; Key Laboratory of

Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China

Huangjun Xie, Liu Yu, Rui Zhou, Limin Qiu, Xiaobin Zhang*

Abstract: The potential application of the 2-D eight-electrode electrical capacitance

tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen

(LN₂-VN₂) flow in the tube is theoretically evaluated. The phase distribution of the

computational domain is obtained using the simultaneous iterative reconstruction

technique with variable iterative step size. The detailed mathematical derivations for

the calculations are presented. The calculated phase distribution for the two detached

LN₂ column case shows the comparable results with the water-air case, regardless of

the much reduced dielectric permittivity of LN₂ compared with water. The inversion

images of total eight different LN2-VN2 flow patterns are presented and quantitatively

evaluated by calculating the relative void fraction error and the correlation coefficient.

The results demonstrate that the developed reconstruction technique for ECT has the

capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the

accuracy of the inversion images is significantly influenced by the size of the discrete

phase. The influence of the measurement noise on the image quality is also considered

in the calculations.

Keywords: Cryogenic; Two-phase flow; ECT; FEM; Void fraction

1. Introduction

The gas-liquid two-phase flow phenomenon is widely existed in the industrial

equipment, such as the evaporator, condenser, distillation column and other chemical

reaction equipment. For the cryogenic conditions, since the liquid nitrogen (LN₂) and

liquid oxygen (LO₂) works at temperature much lower than the ambient temperature,

Corresponding author

Email: zhangxbin@zju.edu.cn

Download English Version:

https://daneshyari.com/en/article/5444081

Download Persian Version:

https://daneshyari.com/article/5444081

<u>Daneshyari.com</u>