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The accurate fault prediction is of great importance in electronics high reliability applications for condition based
maintenance. Traditional Particle filter (TPF) used for fault prognostic mainly uses the first-order state equation
which represents the relationship between the current state and one-step-before state without considering the
relation with multi-step-before states. This paper presents an optimal multi-order particle filter method to im-
prove the prediction accuracy. Themultiple τth-order state equation is established by training Least Squares Sup-
port Vector Regression (LSSVR) via electronics historical failure data, the τ value and LSSVR parameters are
optimized through Genetic Algorithm (GA). The optimal τth-order state equation which can really reflect elec-
tronics degradation process is used in particle filter to predict the electronics status, remaining useful life
(RUL) or other performances. An online update scheme is developed to adapt the optimal τth-order state trans-
formationmodel to dynamic electronics. The performance of the proposedmethod is evaluated by using the test-
ing data from CG36A transistor degradation and lithium-ion battery data. Results show that it surpasses classical
prediction methods, such as LSSVR, TPF.
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1. Introduction

Prognostic and Health management (PHM) in electronics high reli-
ability applications have attracted increasing concern in the critical
field of space, avionics and military owing to the fact that it has ability
to mitigate the risks of catastrophic failures and reduce the life cycle
costs [1]. Electronics prognostics which mean prognostics for electron-
ics determine the current system health status, their progression, accu-
mulated damage and provide assessments of remaining useful life
(RUL) of the product [2]. The accuracy of the future status prediction
guarantees the effectiveness of fault prognostic. Accordingly, the raise
of prediction accuracy is a key issue in fault prognostic of PHM tech-
niques, especially for such highly reliable electronic product.

In the last few years, numerous research efforts have been reported
in the field of electronics prognosis [3,4]. Electronics prognostic
methods can be classified into two main classes: physics-based (or
model-based) and data-based methods [5]. Physics-based methods
use knowledge of an electronic product's life cycle loading conditions,
geometry, material properties, and failure mechanisms to estimate its
fault evolution trend or RUL [6,7]. Given an appropriate physical
model, e.g., mathematical representation based on the specific knowl-
edge for a specific system, physics-based methods can obtain accurate
prediction assessment. However, it is usually hard to acquire the specific

knowledge in most practical applications, especially when the process
of fault evolution is complicated and/or is not fully known [8]. In com-
parison, data-based methods apply the measured condition data to es-
tablish the fault evolution models by using statistical method,
e.g., Gamma process [9], Bayesian method [10],and machine learning
techniques, e.g., neural networks (NN) [11], support vector machines
(SVM) [12], which avoids developing high-level physical models of
the system, so that they are less complex than physics-based ap-
proaches [6]. However, data-based methods have requirements on
training data while physics-basedmethods do not. Sometimes it is cost-
ly to obtain the data for some complex systems, e.g., history data, fault
injection data, and simulation data. These data are used for construct
or train prediction model, then the uncertainty and imperfection of
data can cause difficulties for data-based methods. While for the sys-
tems whose data measured easily and reflected the health status cor-
rectly, data-based methods are suitable. Since most data-based
methods, such as NN, SVM, particle filter (PF), can be employed in var-
ious systems, they have becomeprevalent prediction tools in electronics
prognosis [13].

In data-based methods, support vector machines (SVM) has been
employed successfully in various machine learning domains of predic-
tion and regression analysis, such as power system [14],battery state
of charge (SOC) [15]. For small sample data, SVMs outperform the neu-
ral network models particularly [16]. However, SVM predictor used for
data with noise is unfavorable. Since the health states of electronics in
actual applications vary with time, e.g., the changes of components' pa-
rameters caused by degeneration, and the measured data usually in-
clude noises, the trained SVM may not have the ability to implement

Microelectronics Reliability 62 (2016) 167–177

⁎ Corresponding author at: College of Automation Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing 210016, China.

E-mail address: jyyll672@163.com (Y. Jiang).

http://dx.doi.org/10.1016/j.microrel.2016.03.030
0026-2714/© 2016 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Microelectronics Reliability

j ourna l homepage: www.e lsev ie r .com/ locate /mr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2016.03.030&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2016.03.030
mailto:jyyll672@163.com
http://dx.doi.org/10.1016/j.microrel.2016.03.030
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/mr


accurate predictions if various states including noises are considered
during the prediction process.

Considering that recursive Bayesian algorithm, PF is a sequential
Monte Carlo (MC)method that approximates the state probability den-
sity function (PDF) by using particles with associated weights. PF are
able to solve problems of real-time state estimation, and has been suc-
cessfully applied in many fields such as visual tracking [17], navigation
[18], speech recognition [19], fault detection [20,21], prediction [22,
23], and so on. The outstanding advantage of PF is that it can handle ef-
fectively non-Gaussian noises and nonlinear state estimation problem
because of the capability of represent arbitrary probability densities
[24]. Recently, PF has been applied in prognosis since the fault degrada-
tion is a complex nonlinear problem while PF is particularly useful in
solving those difficulties. In most applications, mathematical models
have been established to describe the fault evolution process. Some
mathematical models are established by using the specific knowledge
related to the physical mechanism, e.g. life cycle loading conditions,
geometry, material properties, and failure mechanisms, which are
considered as physics-based models. Some mathematical models
are established by using statistical and machine learning techniques
based on measured condition data, which are considered as data-
based model. However, these mathematical models are complex
and need expert knowledge of the degradation process to estimate
the parameters' values of the fault evolution model. Furthermore,
note that most of fault evolution model adopted in these studies
based on PF method is a first-order state equation xk= f(xk−1,uk−1)
which represents the relationship between the current state xk and
one-step-before state xk−1, while multi-order state equation can be de-
fined by xk= f(xk−1,xk−2,⋯ ,xk−τ,uk−1), e.g. τ=2,3 ,4 ,⋯. However,
in many practical applications the first-order model cannot represent
the actual evolution, and a multi-order model may be more suitable to
describe the fault degradation trend. This means that the current sys-
tem state depends not only on the previous state but also on τ-step-be-
fore states, e.g. τ=2,3,4 ,⋯. Chen et al. [13] proposed the multi-order
model by using Neuro–Fuzzy and set τ to a fixed value and then the op-
timum τ value is needed to be found so that τth-ordermodel can reflect
the actual system aswell as gives high prediction accuracy. PF approach
can update system states via new data in real time; the SVM is inte-
grated with a PF so that online data can be employed to improve the
prediction accuracy. In this paper, an optimal multi-order PF method
is presented for electronics prognosis, where a combination of the
Least Squares Support Vector Regression (LSSVR) and the process
noise, as a multi-order state equation, is used to describe the fault
growth process.

Note that the errors between the actual condition and the prediction
estimates from the LSSVR model do exist even with a well-trained
LSSVR model. Besides, system dynamics may change in the future.
Therefore, an online multi-τth-order model adaptation which can
really reflect electronics degradation process is desirable. In this
paper, the order value is optimized by Genetic Algorithm (GA). The
optimal τth-order state equation can be updated online by training
LSSVR when the latest data is acquired. The online model update
scheme can adapt the fault evolution model to various dynamic
electronics.

In this paper, the combination of the LSSVR and multi-order PF
presents a novel method for electronics fault prognosis that possesses
the advantages involving nonlinear mapping and real-time state esti-
mation. Experimental data from CG36A transistor degradation and
lithium-ion battery are employed to verify the proposed method. Re-
sults show that it surpasses the two classical prediction methods:
LSSVR and traditional particle filter (TPF).

The remainder of this paper is organized as follows: Section 2 intro-
duces the TPF to perform condition prediction and the multi-order par-
ticle filter (MPF) based on multi-τth-order model. Section 3 presents
the proposed prediction method. Multi-order state model is introduced
first, and then, the integration of the LSSVR in a multi-order PF is

demonstrated. Next, the order value of state model and LSSVR parame-
ters is optimized by GA. An online state model update is presented.
Finally, the concrete step of the prediction algorithm is illustrated.
Section 4 presents the experimental results of the proposed ap-
proach on two electronic products, and the performance comparison
with TPF and LSSVR predictors is given. Section 5 provides some con-
cluding remarks.

2. Particle filter

2.1. Traditional Particle filter

Particle filter (PF) is an effective state estimation algorithm for
implementing a recursive Bayesian filter usingMonte Carlo (MC) simu-
lations and, as such, is known as a sequential MC (SMC) method [16].
Traditional PF (TPF) methods assume that the system state dynamics
can be represented as a first-ordermodel with the outputs being condi-
tionally independent [25]. This is expressed as follows:

xk ¼ f k xk−1;uk−1ð Þ ð1Þ

zk ¼ hk xk; vkð Þ ð2Þ

where {xk,k∈N} is state sequence, k is the time index and N is the
natural number set, and {zk,k∈N} is the corresponding measurement
sequence {zk,k∈N}.fk is state evolution function, hk is measurement
function that denotes the nonlinear mapping relationship between the
model states and the noisy measurements, {uk,k∈N} is an independent
and identically distributed (i.i.d.) process noise sequence and {vk,k∈N}
is an i.i.d. measurement noise sequence.

Within a Bayesian framework, the estimation problem is the recur-
sive process of constructing the PDF of the state xk at time k given the
measurements up to time k, i.e. calculating p(xk |z1:k). The core idea of
the PF is to approximate the posterior PDF, {x0:ki , i=1,2,⋯ ,Ns} with as-
sociated weights {ω0:k

i , i=1,2,⋯ ,Ns},

p xk z1:kjð Þ≈
XNS

i¼1

ωi
kδ xk−xik
� �

ð3Þ

where p(xk |z1:k) is the PDF available at previous time k, δ(⋅) is the Dirac
function, Ns is the number of particle.

For the discrete weighted approximation to the true posterior
p(x), the weights need to be defined and this can be done via impor-
tance sampling. Thus, the weight of each ith particle is calculated as:

ωi
k∝

p xi0:k z1:kj� �
q xi0:k z1:kj� � ð4Þ

where the set of samples xi~q(x),i=1 ,2 , ⋯ ,Ns, which we easily
generate from a proposal distribution q(x), called importance
density.

Factorizing the importance density as:

q x0:k z1:kjð Þ ¼ q xk x0:k−1; z1:kjð Þq x0:k−1 z1:k−1jð Þ: ð5Þ

The weight update is given as follows:

ωi
k ∝ω

i
k−1

p zk xik
��� �

p xik xik−1

��� �
q xik xik−1; zk

��� � ð6Þ

where p(zk |xk) is the likelihood function.
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